Example #1
0
 def get_param_info_list(nnweight_cfg):
     # new way to try and specify config options.
     # not sure if i like it yet
     param_info_list = ut.flatten([
         [
             ut.ParamInfo('ratio_thresh', None, type_=float, hideif=None),
             ut.ParamInfoBool('lnbnn_on', True,  hideif=False),
             ut.ParamInfoBool('const_on', False,  hideif=False),
             ut.ParamInfoBool('borda_on', False,  hideif=False),
             ut.ParamInfoBool('lograt_on', False, hideif=False),
             #ut.ParamInfoBool('loglnbnn_on', False,  hideif=False),
             #ut.ParamInfoBool('logdist_on', False,  hideif=False),
             #ut.ParamInfoBool('dist_on', False,  hideif=False),
             ut.ParamInfoBool('normonly_on', False,  hideif=False),
             ut.ParamInfoBool('bar_l2_on', False,  hideif=False),
             ut.ParamInfoBool('cos_on', False,  hideif=False),
             ut.ParamInfoBool('fg_on', True, hideif=False),
             ut.ParamInfo('normalizer_rule', 'last', '', valid_values=['last', 'name']),
             ut.ParamInfo('lnbnn_normer', None,  hideif=None,
                          help_='config string for lnbnn score normalizer'),
             ut.ParamInfo('lnbnn_norm_thresh', .5, type_=float,
                          hideif=lambda cfg: not cfg['lnbnn_normer'] ,
                          help_='config string for lnbnn score normalizer'),
             #
             ut.ParamInfoBool('can_match_sameimg', False,  'sameimg',
                              hideif=False),
             ut.ParamInfoBool('can_match_samename', True, 'samename',
                              hideif=True),
             # Hacked in
             #ut.ParamInfoBool('root_sift_on', False,  hideif=False),
             ut.ParamInfoBool('sqrd_dist_on', False,  hideif=True),
             #ut.ParamInfoBool('sqrd_dist_on', True,  hideif=True),
         ],
     ])
     return param_info_list
Example #2
0
class VsoneConfig(object):
    _param_info_list = [
        ut.ParamInfo('distinctiveness_model'),
        ut.ParamInfo('score_norm_model'),
    ]

    pass
Example #3
0
class ThumbnailConfig(dtool.Config):
    _param_info_list = [
        ut.ParamInfo('draw_annots', True, hideif=True),
        ut.ParamInfo('thumbsize', None, hideif=None),
        ut.ParamInfo('ext', '.png', hideif='.png'),
        ut.ParamInfo('force_serial', False, hideif=False),
    ]
Example #4
0
 def get_param_info_list(self):
     return [
         ut.ParamInfo('manual_extract', False, hideif=False),
         #ut.ParamInfo('ntversion', 1)
         ut.ParamInfo('version', 4),
         ut.ParamInfo('kp_net', '128_decoupled'),
     ]
Example #5
0
 def get_param_info_list(self):
     return [
         ut.ParamInfo('K', 4),
         ut.ParamInfo('Knorm', 1),
         ut.ParamInfo('checks', 800),
         ut.ParamInfo('version', 1),
     ]
Example #6
0
 def get_param_info_list(self):
     return [
         ut.ParamInfo('csize_max', 8),
         ut.ParamInfo('csize_min', 2),
         ut.ParamInfo('csize_step', 2),
         #ut.ParamInfo('sizes', [2, 4, 6, 8]), # these are percentage (as ints) of trailing edge width
         ut.ParamInfo('version', 2),
     ]
Example #7
0
class VocabConfig(dtool.Config):
    _param_info_list = [
        ut.ParamInfo('algorithm', 'minibatch', 'alg'),
        ut.ParamInfo('random_seed', 42, 'seed'),
        ut.ParamInfo('num_words', 1000, 'n'),
        ut.ParamInfo('version', 2),
        ut.ParamInfo('n_init', 1),
    ]
class FeatConfig(dtool.Config):
    _param_info_list = [
        ut.ParamInfo('affine_invariance', True),
        ut.ParamInfo('rotation_invariance', False),
        ut.ParamInfo('augment_orientation', False),
        ut.ParamInfo('dense', False),
        ut.ParamInfo('dense_stride', False, hideif=lambda cfg: not cfg['dense']),
    ]
Example #9
0
 def get_param_info_list(self):
     return [
         ut.ParamInfo('crop_dim_size', 750, 'sz', hideif=750),
         ut.ParamInfo('crop_enabled', True, hideif=False),
         #ut.ParamInfo('ccversion', 1)
         ut.ParamInfo('version', 2),
         ut.ParamInfo('ext', '.png'),
     ]
Example #10
0
 def get_param_info_list(occur_cfg):
     param_info_list = [
         ut.ParamInfo('min_imgs_per_occurrence', 1, 'minper='),
         ut.ParamInfo('cluster_algo', 'agglomerative', '', valid_values=['agglomerative', 'meanshift']),
         ut.ParamInfo('quantile', .01, 'quant', hideif=lambda cfg: cfg['cluster_algo'] != 'meanshift'),
         ut.ParamInfo('seconds_thresh', 600, 'sec', hideif=lambda cfg: cfg['cluster_algo'] != 'agglomerative'),
         ut.ParamInfo('use_gps', False, hideif=False),
     ]
     return param_info_list
Example #11
0
class InferenceConfig(dtool.Config):
    _param_info_list = [
        ut.ParamInfo('min_labels', 1),
        ut.ParamInfo('max_labels', 5),
        ut.ParamInfo('thresh_method',
                     'elbow',
                     valid_values=['elbow', 'mean', 'median', 'custom']),
        ut.ParamInfo('thresh',
                     .5,
                     hideif=lambda cfg: cfg['thresh_method'] != 'custom'),
    ]
Example #12
0
 def get_param_info_list(self):
     return [
         #ut.ParamInfo('score_method', 'csum'),
         # should this be the only thing here?
         #ut.ParamInfo('daids', None),
         ut.ParamInfo('decision', 'max'),
         #ut.ParamInfo('sizes', (5, 10, 15, 20)),
         ut.ParamInfo('weight_import', 1),
         ut.ParamInfo('window', 10),
         #ut.ParamInfo('bcdtwversion', 1),
         ut.ParamInfo('version', 8),
     ]
Example #13
0
class InvertedIndexConfig(dtool_ibeis.Config):
    _param_info_list = [
        ut.ParamInfo('nAssign', 1),
        #ut.ParamInfo('int_rvec', False, hideif=False),
        ut.ParamInfo('int_rvec', True, hideif=False),
        ut.ParamInfo('massign_equal,', False),
        ut.ParamInfo('massign_alpha,', 1.2),
        # ut.ParamInfo('massign_sigma,', 80.0, hideif=lambda cfg: cfg['massign_equal']),
        ut.ParamInfo('inva_version', 2),
        #
        #massign_sigma=80.0,
        #massign_equal_weights=False
    ]
Example #14
0
class ClassifierConfig(dtool.Config):
    _param_info_list = [
        ut.ParamInfo('classifier_sensitivity', None),
    ]
    _sub_config_list = [
        ThumbnailConfig
    ]
Example #15
0
 def rectify_item(key, val):
     if val is None:
         return ut.ParamInfo(key, val)
     elif isinstance(val, ut.ParamInfo):
         if val.varname is None:
             # Copy and assign a new varname
             pi = copy.deepcopy(val)
             pi.varname = key
         else:
             pi = val
             assert pi.varname == key, (
                 'Given varname=%r does not match key=%r' %
                 (pi.varname, key))
         return pi
     else:
         return ut.ParamInfo(key, val, type_=type(val))
Example #16
0
class PairFeatureConfig(dt.Config):
    """
    Config for building pairwise feature dimensions

    I.E. Config to distil unordered feature correspondences into a fixed length
    vector.
    """
    _param_info_list = [
        # ut.ParamInfo('indices', slice(0, 5)),
        ut.ParamInfo('indices', []),
        ut.ParamInfo('summary_ops', {
            # 'invsum',
            'sum', 'std', 'mean', 'len', 'med'}),
        ut.ParamInfo('local_keys', None),
        ut.ParamInfo('sorters', [
            # 'ratio', 'norm_dist', 'match_dist'
            # 'lnbnn', 'lnbnn_norm_dist',
        ]),
        # ut.ParamInfo('bin_key', None, valid_values=[None, 'ratio']),
        ut.ParamInfo('bin_key', 'ratio', valid_values=[None, 'ratio']),
        # ut.ParamInfo('bins', [.5, .6, .7, .8])
        # ut.ParamInfo('bins', None, type_=eval),
        ut.ParamInfo('bins', (.625,), type_=eval),
        # ut.ParamInfo('need_lnbnn', False),
        ut.ParamInfo('use_na', False),  # change to True if sklearn has RFs with nan support
    ]
Example #17
0
class VocabConfig(dtool.Config):
    """
    Example:
        >>> from ibeis.core_annots import *  # NOQA
        >>> cfg = VocabConfig()
        >>> result = str(cfg)
        >>> print(result)
    """
    _param_info_list = [
        ut.ParamInfo('algorithm', 'kdtree', 'alg'),
        ut.ParamInfo('random_seed', 42, 'seed'),
        ut.ParamInfo('num_words', 1000, 'seed'),
        ut.ParamInfo('version', 1),
        # max iters
        # flann params
        # random seed
    ]
    _sub_config_list = []
Example #18
0
class DummyVsManyConfig(dtool.Config):
    # Different pipeline components can go here as well as dependencies
    # that were not explicitly enumerated in the tree structure
    _param_info_list = [
        #ut.ParamInfo('score_method', 'csum'),
        # should this be the only thing here?
        #ut.ParamInfo('daids', None),
        ut.ParamInfo('distinctiveness_model', None),
        ut.ParamInfo('version', 2),
    ]
    _sub_config_list = [
        # I guess different annots might want different configs ...
        DummyChipConfig,
        DummyKptsConfig,
        DummyIndexerConfig,
        DummyNNConfig,
        DummySVERConfig
    ]
Example #19
0
 def rectify_item(key, val):
     if val is None:
         return ut.ParamInfo(key, val)
     elif isinstance(val, ut.ParamInfo):
         if val.varname is None:
             # Copy and assign a new varname
             pi = copy.deepcopy(val)
             pi.varname = key
         else:
             pi = val
             assert pi.varname == key, (
                 'Given varname=%r does not match key=%r' % (pi.varname, key))
         return pi
     else:
         if isinstance(val, Config):
             # Set table name from key when doing nested from dicts
             if val.__class__.__name__ == 'UnnamedConfig':
                 val.__class__.__name__ = key + 'Config'
         return ut.ParamInfo(key, val, type_=type(val))
Example #20
0
def gridsearch_addWeighted():
    r"""
    CommandLine:
        python -m vtool.blend --test-gridsearch_addWeighted --show

    Example:
        >>> # GRIDSEARCH
        >>> from vtool.blend import *  # NOQA
        >>> gridsearch_addWeighted()
        >>> ut.show_if_requested()
    """
    import cv2
    import vtool as vt

    def test_func(src1, src2, alpha=1.0, **kwargs):
        beta = 1.0 - alpha
        src1 = vt.rectify_to_float01(src1)
        src2 = vt.rectify_to_float01(src2)
        dst = np.empty(src1.shape, dtype=src1.dtype)
        cv2.addWeighted(src1=src1,
                        src2=src2,
                        dst=dst,
                        alpha=alpha,
                        beta=beta,
                        dtype=-1,
                        **kwargs)
        return dst

    img1, img2 = testdata_blend()
    args = img1, img2 = vt.make_channels_comparable(img1, img2)
    param_info = ut.ParamInfoList(
        'blend_params',
        [
            ut.ParamInfo('alpha', .8, varyvals=np.linspace(0, 1.0,
                                                           5).tolist()),
            #ut.ParamInfo('beta', .8,
            ut.ParamInfo('gamma', .0, varyvals=np.linspace(0, 1.0,
                                                           5).tolist()),
            #varyvals=[.0],))
            #ut.ParamInfo('gamma', .8, 'alpha=',
            #             varyvals=np.linspace(0, 1.0, 9).tolist()),
        ])
    gridsearch_image_function(param_info, test_func, args)
Example #21
0
 def get_param_info_list(self):
     return [
         ut.ParamInfo('n_neighbors', 3, 'n_nb'),
         ut.ParamInfo('ignore_notch', True, 'ign_n', hideif=False),
         #ut.ParamInfo('teversion', 1),
         ut.ParamInfo('version', 9),
         ut.ParamInfo('use_te_scorer', True, 'te_s', hideif=False),
         ut.ParamInfo('te_score_weight', 0.5, 'w_tes'),
         ut.ParamInfo('te_net', 'annot_res'),
         ut.ParamInfo('te_score_method', 'avg', 'te_sm'),
         ut.ParamInfo(
             'tol', None
         ),  # allow the trailing edge to go x percentage of the image height below
     ]
Example #22
0
class ProbchipConfig(dtool.Config):
    """
    CommandLine:
        python -m dtool.example_depcache --exec-ProbchipConfig --show

    Example:
        >>> # DISABLE_DOCTEST
        >>> from wbia.dtool.depcache_control import *  # NOQA
        >>> from wbia.dtool.example_depcache import testdata_depc
        >>> depc = testdata_depc()
        >>> table = depc['probchip']
        >>> exec(ut.execstr_funckw(table.get_rowid), globals())
        >>> config = table.configclass(testerror=True)
        >>> root_rowids = [1, 2, 3]
        >>> parent_rowids = list(zip(root_rowids))
        >>> proptup_gen = list(table.preproc_func(depc, root_rowids, config))
        >>> pc_rowids = depc.get_rowids('probchip', root_rowids, config)
        >>> prop_list2 = depc.get('probchip', root_rowids, config=config, read_extern=False)
        >>> print(prop_list2)
        >>> #depc.new_request('probchip', [1, 2, 3])
        >>> fg_rowids = depc.get_rowids('fgweight', root_rowids, config)
        >>> fg = depc.get('fgweight', root_rowids, config=config)
        >>> #############
        >>> config = table.configclass(testerror=False)
        >>> root_rowids = [1, 2, 3]
        >>> parent_rowids = list(zip(root_rowids))
        >>> proptup_gen = list(table.preproc_func(depc, root_rowids, config))
        >>> pc_rowids2 = depc.get_rowids('probchip', root_rowids, config)
        >>> prop_list2 = depc.get('probchip', root_rowids, config=config, read_extern=False)
        >>> print(prop_list2)
        >>> #depc.new_request('probchip', [1, 2, 3])
        >>> fg_rowids2 = depc.get_rowids('fgweight', root_rowids, config)
    """

    _param_info_list = [
        ut.ParamInfo('testerror', False, hideif=False),
        ut.ParamInfo('ext', '.png', hideif='.png'),
    ]
Example #23
0
class NormFeatScoreConfig(dtool.Config):
    _alias = 'nfscfg'
    _param_info_list = [
        ut.ParamInfo('disttype', None),
        ut.ParamInfo('namemode', True),
        ut.ParamInfo('fsvx', None, type_='fuzzy_subset', hideif=None),
        ut.ParamInfo('threshx',  None, hideif=None),
        ut.ParamInfo('thresh', .9, hideif=lambda cfg: cfg['threshx'] is None),
        ut.ParamInfo('num', 5),
        # ut.ParamInfo('top_percent', None, hideif=None),
        ut.ParamInfo('top_percent', .5, hideif=None),
    ]
Example #24
0
class LocalizerConfig(dtool.Config):
    _param_info_list = [
        ut.ParamInfo('algo', 'yolo'),
        ut.ParamInfo('sensitivity', 0.0),
        ut.ParamInfo('species', 'zebra_plains', hideif='zebra_plains'),
        ut.ParamInfo('config_filepath', None),
        ut.ParamInfo('weight_filepath', None),
        ut.ParamInfo('grid', False),
    ]
    _sub_config_list = [
        ThumbnailConfig
    ]
Example #25
0
class DetectorConfig(dtool.Config):
    _param_info_list = [
        ut.ParamInfo('classifier_sensitivity',    0.82),
        ut.ParamInfo('localizer_config_filepath', None),
        ut.ParamInfo('localizer_weight_filepath', None),
        ut.ParamInfo('localizer_grid',            False),
        ut.ParamInfo('localizer_sensitivity',     0.16),
        ut.ParamInfo('labeler_sensitivity',       0.42),
    ]
    _sub_config_list = [
        ThumbnailConfig,
        LocalizerConfig,
    ]
Example #26
0
 def get_param_info_list(rrvsone_cfg):
     # new way to try and specify config options.
     # not sure if i like it yet
     param_info_list = ut.flatten([
         [
             ut.ParamInfo('index_method', 'single', ''),
             ut.ParamInfo('K', 4, type_=int),
             ut.ParamInfo('Knorm', 1, 'Kn='),
             ut.ParamInfo('use_k_padding', False, 'padk='),
             ut.ParamInfo('single_name_condition', False, 'nameknn', type_=bool, hideif=False),
             ut.ParamInfo('checks', 800, 'cks', type_=int),
             #ut.ParamInfo('ratio_thresh', None, type_=float, hideif=None),
         ],
     ])
     return param_info_list
Example #27
0
 def get_param_info_list(rrvsone_cfg):
     from ibeis.algo.hots import distinctiveness_normalizer
     from ibeis.algo.hots import vsone_pipeline
     # new way to try and specify config options.
     # not sure if i like it yet
     param_info_list = ut.flatten([
         [
             ut.ParamInfo('rrvsone_on', False, ''),
         ],
         vsone_pipeline.OTHER_RRVSONE_PARAMS.aslist(),
         vsone_pipeline.SHORTLIST_DEFAULTS.aslist(),
         vsone_pipeline.COEFF_DEFAULTS.aslist(),
         vsone_pipeline.UNC_DEFAULTS.aslist(),
         vsone_pipeline.SCR_DEFAULTS.aslist(),
         vsone_pipeline.COVKPTS_DEFAULT.aslist(
             hideif=lambda cfg: not cfg['covscore_on'] or cfg['maskscore_mode'] != 'kpts'),
         vsone_pipeline.COVGRID_DEFAULT.aslist(
             hideif=lambda cfg: not cfg['covscore_on'] or cfg['maskscore_mode'] != 'grid'),
         distinctiveness_normalizer.DCVS_DEFAULT.aslist(
             hideif=lambda cfg: not cfg['dcvs_on']),
     ])
     return param_info_list
Example #28
0
class SMKRequestConfig(dtool_ibeis.Config):
    """ Figure out how to do this """
    _param_info_list = [
        ut.ParamInfo('proot', 'smk'),
        ut.ParamInfo('smk_alpha', 3.0),
        ut.ParamInfo('smk_thresh', 0.0),
        #ut.ParamInfo('smk_thresh', -1.0),
        ut.ParamInfo('agg', True),
        ut.ParamInfo('data_ma',
                     False),  # hack for query only multiple assignment
        ut.ParamInfo(
            'word_weight_method', 'idf',
            shortprefix='wwm'),  # hack for query only multiple assignment
        ut.ParamInfo('smk_version', 3),
    ]
    _sub_config_list = [
        core_annots.ChipConfig,
        core_annots.FeatConfig,
        old_config.SpatialVerifyConfig,
        vocab_indexer.VocabConfig,
        inverted_index.InvertedIndexConfig,
        MatchHeuristicsConfig,
    ]
Example #29
0
class DummyChipConfig(dtool.Config):
    """
    Example:
        >>> # ENABLE_DOCTEST
        >>> from dtool.example_depcache import *  # NOQA
        >>> cfg = DummyChipConfig()
        >>> cfg.dim_size = 700
        >>> cfg.histeq = True
        >>> print(cfg)
        >>> cfg.histeq = False
        >>> print(cfg)
    """
    _param_info_list = [
        ut.ParamInfo('resize_dim',
                     'width',
                     valid_values=['area', 'width', 'heigh', 'diag']),
        ut.ParamInfo('dim_size', 500, 'sz'),
        ut.ParamInfo('preserve_aspect', True),
        ut.ParamInfo('histeq', False, hideif=False),
        ut.ParamInfo('ext', '.png'),
        ut.ParamInfo('version', 0),
    ]
Example #30
0
class MatchHeuristicsConfig(dtool.Config):
    _param_info_list = [
        ut.ParamInfo('can_match_self', False),
        ut.ParamInfo('can_match_samename', True),
        ut.ParamInfo('can_match_sameimg', False),
    ]