Example #1
0
def hapinitial(allele):
    
    #Edge counts are used. Count of edge/Total count for all edges.
    for i in G.out_edges(1, data=True):        
        if i[2]['allele'] == allele:
            return sum(G.node[i[1]]['frequency'])/sum(G.node[1]['frequency'])
Example #2
0
import math
import numpy as np
import itertools

from v3 import G, glevel

#ll is number of levels in the graph
ll = len(glevel) -1
print "ll"
print ll

#Set the genotype
GT = [('?','?'),(1,1),(1,2),(1,2)]

#Create n the list of the number of edges in each level
n = [G.out_degree(1)]

#m is the list of matrices of forward probabilities at each level
m = [np.zeros(shape=(n[0],n[0]))]

#Append matrices to list m
for i in range(ll-1):    
    #Sum n for each level
    n.append(G.out_degree(glevel[i]+1))
    for j in range(glevel[i]+2, glevel[i+1]+1):
        n[i+1] += G.out_degree(j)

    #Append zero-filled matrix to list m
    m.append(np.zeros(shape=(n[i+1],n[i+1])))

#Haploid initial state probabilities. allele: allele number.