Example #1
0
 def __init__(self, policy_path, true_path, virtual_path, edge_desty, subpath, axes_file, speed_file, query_name):
     self.sigma = 30
     self.vopt = VOpt()
     self.B = 3
     self.policy_path = policy_path
     self.true_path = true_path
     self.virtual_path = virtual_path
     self.edge_desty = edge_desty
     self.subpath = subpath
     self.axes_file = axes_file
     self.speed_file = speed_file
     self.speed = 50
     self.query_name = query_name
Example #2
0
    def main(self, ):
        data = self.load()
        tpath = TPath(self.filename, self.subpath, self.dinx, self.threads_num)
        edge_time_freq = tpath.get_edge_time_freq(data)
        self.mkgraph = MkGraph(self.filename)
        anodes, aedges = self.get_graph()
        self.mkgraph.add_node_list(anodes)
        self.mkgraph.add_edge_list(aedges)
        self.anodes = anodes
        points = self.get_axes()
        path_desty, path_count, path_num, overlap, TP = self.get_dict()
        
        vopt = VOpt()
        print('v opt edge ...')
        #self.edge_time_freq = multiprocessing.Manager().dict()
        edge_time_freq = self.get_vopt(vopt, edge_time_freq, False, True)
        path_desty = self.get_vopt(vopt, path_desty, True, True)

        print('gen ...')
        #self.vopt = vopt
        path_desty, out_degrees, out_degrees2, All_Path = self.gen(vopt, path_desty, path_count, path_num, overlap, edge_time_freq, TP, points)
        print('path desty length %d'%len(path_desty))
        self.write_degree(out_degrees, self.subpath+self.store_degree_fname)
        self.write_degree(out_degrees2, self.subpath+self.store_degree_fname2)
        self.store_graph(self.subpath+self.graph_store_fname)
        All_Path_ = {}
        for ak in All_Path:
            All_Path_[ak] = All_Path[ak]
        self.write_json(All_Path_, self.subpath+self.store_desty_fname)
Example #3
0
class Rout():
    def __init__(self, policy_path, true_path, virtual_path, edge_desty,
                 subpath, axes_file, speed_file, query_name, sigma, eta):
        self.sigma = 30
        self.vopt = VOpt()
        self.B = 3
        self.policy_path = policy_path
        self.true_path = true_path
        self.virtual_path = virtual_path
        self.edge_desty = edge_desty
        self.subpath = subpath
        self.axes_file = axes_file
        self.speed_file = speed_file
        self.speed = 50
        self.query_name = query_name
        self.sigma = sigma
        self.eta = eta
        self.hU = {}

    def get_axes(self, ):
        fo = open(self.axes_file)
        points = {}
        for line in fo:
            line = line.split('\t')
            points[line[0]] = (float(line[2]), float(line[1]))
        return points

    def get_distance(self, points, point):
        (la1, lo1) = points[point[0]]
        (la2, lo2) = points[point[1]]
        return geodesic((lo1, la1), (lo2, la2)).kilometers

    def get_U2(self, u_name):
        if u_name in self.hU:
            return self.hU[u_name]
        if not os.path.isfile(self.policy_path + u_name):
            print('no this U : %s' % (self.fpath + u_name))
            return {}
        fn = open(self.policy_path + u_name)
        U = {}
        for line in fn:
            line = line.strip().split(';')
            U[line[0]] = np.zeros(self.eta)
            if line[1] == '-1' and line[2] == '-1':
                pass
            elif line[1] == '-1' and line[2] == '0':
                U[line[0]] = np.ones(self.eta)
            else:
                for i in range(int(line[1]) + 1, int(line[2])):
                    t = 3 + i - int(line[1]) - 1
                    U[line[0]][i] = float(line[t])
                for i in range(int(line[2]), self.eta):
                    U[line[0]][i] = 1.0
        fn.close()
        self.hU[u_name] = U
        return U

    def get_dict(self, ):
        path_desty = {}
        for l in range(1, 5):
            with open(self.subpath + self.virtual_path +
                      '_%d.json' % l) as js_file:
                path_desty_ = json.load(js_file)
            path_desty.update(path_desty_)

        with open(self.subpath + self.edge_desty) as js_file:
            edge_desty = json.load(js_file)
            edge_desty = dict(
                sorted(edge_desty.items(), key=operator.itemgetter(0)))
        vedge_desty = {}
        for p_k in path_desty:
            vedge_desty[p_k] = path_desty[p_k][0][1]
        return vedge_desty, edge_desty, path_desty

    def get_speed(self, ):
        speed_dict = {}
        with open(self.speed_file) as fn:
            for line in fn:
                line = line.strip().split('\t')
                #speed_dict[line[0]] = {int(float(line[1])/float(line[2])*3600): 1.0}
                speed_dict[line[0]] = {
                    3600 * float(line[1]) / float(line[2]): 1.0
                }
        return speed_dict

    def get_graph(self, edge_desty, vedge_desty):
        speed_dict = self.get_speed()
        all_nodes, all_edges = set(), set()
        for key in speed_dict:
            line = key.split('-')
            all_nodes.add(line[0])
            all_nodes.add(line[1])
            all_edges.add(key)
        all_nodes, all_edges = list(all_nodes), list(all_edges)
        All_edges = []
        for edge in all_edges:
            edge_ = edge.split('-')
            if edge in edge_desty:
                cost1 = edge_desty[edge].keys()
                cost = min(float(l) for l in cost1)
                All_edges.append((edge_[0], edge_[1], cost))
            elif edge in speed_dict:
                cost1 = speed_dict[edge].keys()
                cost = min(float(l) for l in cost1)
                All_edges.append((edge_[0], edge_[1], cost))
        G2 = nx.DiGraph()
        G2.add_nodes_from(all_nodes)
        G2.add_weighted_edges_from(All_edges)
        return all_edges, all_nodes, G2, speed_dict

    def get_P(self, ):
        pass

    def conv(self, A, B):
        D = {}
        for a_k in A:
            for b_k in B:
                n_k = float(a_k) + float(b_k)
                n_v = float(A[a_k]) * float(B[b_k])
                D[n_k] = n_v
        if len(D) <= 3:
            return D
        D = dict(sorted(D.items(), key=operator.itemgetter(0)))
        new_w = self.vopt.v_opt(list(D.keys()), list(D.values()), self.B)
        new_w = dict(sorted(new_w.items(), key=operator.itemgetter(0)))
        return new_w

    def get_dijkstra3(self, G, target):
        Gk = G.reverse()
        inf = float('inf')
        D = {target: 0}
        Que = PQDict(D)
        P = {}
        nodes = Gk.nodes
        U = set(nodes)
        while U:
            #print('len U %d'%len(U))
            #print('len Q %d'%len(Que))
            if len(Que) == 0: break
            (v, d) = Que.popitem()
            D[v] = d
            U.remove(v)
            #if v == target: break
            neigh = list(Gk.successors(v))
            for u in neigh:
                if u in U:
                    d = D[v] + Gk[v][u]['weight']
                    if d < Que.get(u, inf):
                        Que[u] = d
                        P[u] = v
        return P

    def get_min(self, U, node):
        return np.argwhere(U[node] > 0)[0][0]

    def cosin_distance(self, vector1, vector2):
        dot_product = 0.0
        normA = 0.0
        normB = 0.0
        for a, b in zip(vector1, vector2):
            dot_product += a * b
            normA += a**2
            normB += b**2
        if normA == 0.0 or normB == 0.0:
            return None
        else:
            return dot_product / ((normA * normB)**0.5)

    def rout(self, start, desti, edge_desty, vedge_desty, nodes_order, U, G2,
             points, speed_dict):
        path = []
        Q, P_hat = [], []
        neigh = list(G2.successors(start))
        print('neigh %d' % len(neigh))
        start_ax = points[start]
        desti_ax = points[desti]
        s_d_arr = [desti_ax[0] - start_ax[0], desti_ax[1] - start_ax[1]]
        all_expire = 0.0

        def get_weight(p_hat):
            w_p_hat = {}
            if p_hat in edge_desty:
                w_p_hat = edge_desty[p_hat]
            elif p_hat in speed_dict:
                w_p_hat = speed_dict[p_hat]
            elif p_hat in vedge_desty:
                w_p_hat = vedge_desty[p_hat]
            return w_p_hat

        def get_maxP(w_p_, vv):
            p_max = 0.0
            for pk in w_p_:
                w_pk = w_p_[pk]
                pk_ = int(int(pk) / self.sigma)
                if int(pk) % self.sigma == 0: pk_ += 1
                p_max += float(w_pk) * U[vv][pk_]
            return p_max

        has_visit = set()
        has_visit.add(start)
        Que = PQDict.maxpq()
        Q = {}
        for vi in neigh:
            if vi in has_visit: continue
            else: has_visit.add(vi)
            p_hat = start + '-' + vi
            w_p_hat = get_weight(p_hat)
            w_min = min([float(l) for l in w_p_hat.keys()])
            p_order = nodes_order[vi]  #p_hat]
            tcost1 = time.time()
            inx_min = np.argwhere(U[vi] > 0)
            if len(inx_min) == 0:
                #print('u 0 vd: %s %s'%(vi, desti))
                continue
            inx_min = inx_min[0][0]
            all_expire += time.time() - tcost1
            cost_time = w_min + inx_min * self.sigma
            if cost_time <= self.T:
                tcost1 = time.time()
                p_max = get_maxP(w_p_hat, vi)
                all_expire += time.time() - tcost1
                Que[p_hat] = p_max
                Q[p_hat] = (p_max, w_p_hat, cost_time)
        #print('len Q %d'%len(Q))
        QQ = {}
        p_best_p, flag = 'none', False
        p_max_m, p_best_cost, p_w_p = -1, -1, -1
        if len(Q) == 0: return 'none1', -1, -1, -1, all_expire, -1
        all_rounds = 0
        while len(Q) != 0:
            (p_hat, pqv) = Que.popitem()
            all_rounds += 1
            (p_max, w_p_hat, cost_time) = Q[p_hat]
            del Q[p_hat]
            a = p_hat.rfind('-')
            v_l = p_hat[a + 1:]
            if v_l == desti:
                p_best_p = p_hat
                p_max_m = p_max
                p_best_cost = cost_time
                p_w_p = w_p_hat
                flag = True
                break
            neigh = list(G2.successors(v_l))
            cost_sv = min([float(l) for l in w_p_hat.keys()])
            vd_d_arr = [
                points[desti][0] - points[v_l][0],
                points[desti][1] - points[v_l][1]
            ]
            for u in neigh:
                if u == desti:
                    vu = v_l + '-' + u
                    w_vu = get_weight(vu)
                    if len(w_vu) == 0: cost_vu = 0
                    else: cost_vu = min([float(l) for l in w_vu.keys()])
                    tcost1 = time.time()
                    inx_min = np.argwhere(U[u] > 0)
                    inx_min = inx_min[0][0]
                    p_best_p = p_hat + ';' + vu
                    p_w_p = self.conv(w_p_hat, w_vu)
                    p_max_m = get_maxP(w_p_hat, u)
                    all_expire += time.time() - tcost1
                    p_best_cost = cost_sv + cost_vu + inx_min * self.sigma
                    flag = True
                    break
                if u in has_visit:
                    #print('u1 %s, vd %s'%(u, desti))
                    continue
                else:
                    has_visit.add(u)
                if u in p_hat:
                    #print('u2 %s, vd %s'%(u, desti))
                    continue
                vu = v_l + '-' + u
                w_vu = get_weight(vu)
                if len(w_vu) == 0:
                    #print('vu %s, vd %s'%(vu, desti))
                    continue
                cost_vu = min([float(l) for l in w_vu.keys()])
                p_order = nodes_order[u]  #p_hat]
                tcost1 = time.time()
                inx_min = np.argwhere(U[u] > 0)
                if len(inx_min) == 0:
                    #print('inx vu %s, vd %s'%(vu, desti))
                    continue
                inx_min = inx_min[0][0]
                all_expire += time.time() - tcost1
                cost_time = cost_sv + cost_vu + inx_min * self.sigma
                if cost_time <= self.T:
                    p_hat_p = p_hat + ';' + vu
                    w_p_hat_p = self.conv(w_p_hat, w_vu)
                    tcost1 = time.time()
                    p_hat_max = get_maxP(w_p_hat, u)
                    all_expire += time.time() - tcost1
                    QQ[p_hat_p] = (p_hat_max, w_p_hat_p, cost_time)
            if flag: break
            if len(Q) == 0:
                Q = copy.deepcopy(QQ)
                for qqk in QQ:
                    Que[qqk] = QQ[qqk][0]
                QQ = {}
        return p_best_p, p_max_m, p_best_cost, p_w_p, all_expire, all_rounds

    def main(self, ):
        vedge_desty, edge_desty, path_desty = self.get_dict()
        edges, nodes, G2, speed_dict = self.get_graph(edge_desty, vedge_desty)
        points = self.get_axes()
        df2 = open(self.query_name, 'rb')
        r_pairs = pickle.load(df2)
        df2.close()
        nodes_order, i = {}, 0
        for node in nodes:
            nodes_order[node] = i
            i += 1
        PT = 5
        all_iters, flag = 0, False
        One_Plot = np.zeros(20).reshape(4, 5)
        One_Plot2 = np.zeros(20).reshape(4, 5)
        One_Sums = np.zeros(20).reshape(4, 5)
        one_dis = -1
        cate = ['0-5km', '5-10km', '10-25km', '25-35km']
        for pairs in r_pairs:
            one_dis += 1
            for pair_ in pairs[:]:
                _ = self.get_U2(pair_[-1])
            dij_time = 0.0
            print('distance category %s' % cate[one_dis])
            for pair_ in pairs[:]:
                all_iters += 1
                tstart = time.time()
                print('o-d pair: %s' % pair_[0] + '-' + pair_[1])
                start, desti = pair_[-2], pair_[-1]
                pred = self.get_dijkstra3(G2, desti)
                path_, st1 = [start], start
                distan2 = 0
                while st1 != desti:
                    st2 = st1
                    st1 = pred[st1]
                    path_.append(st1)
                    distan2 += self.get_distance(points, (st2, st1))
                distan = self.get_distance(points, (start, desti))
                st_key = start + '+' + desti + ':' + str(distan) + ':' + str(
                    distan2)
                st1, time_budget = start, 0.0
                for st2 in path_[1:]:
                    sedge = st1 + '-' + st2
                    if sedge in edge_desty:
                        speed_key = list(
                            [float(l) for l in edge_desty[sedge].keys()])
                        time_budget += max(speed_key)
                    elif sedge in speed_dict:
                        speed_key = list(
                            [float(l) for l in speed_dict[sedge].keys()])
                        time_budget += max(speed_key)
                    else:
                        print(' edge: %s not in speed_dict, exit' % sedge)
                        sys.exit()
                    st1 = st2
                #print('time budget: %f'%time_budget)
                U = self.get_U2(desti)
                if len(U) == 0: continue
                tend = time.time()
                for t_b_, t_b in enumerate([0.5, 0.75, 1.0, 1.25, 1.5]):
                    tstart = time.time()
                    self.T = time_budget * t_b
                    best_p, max_m, best_c, best_pw, all_expires, all_rounds = self.rout(
                        start, desti, edge_desty, vedge_desty, nodes_order, U,
                        G2, points, speed_dict)
                    if best_p == 'none1' or best_p == 'none2' or best_p == 'none':
                        continue
                    tend = time.time()
                    One_Plot2[one_dis][t_b_] += tend - tstart - all_expires
                    One_Sums[one_dis][t_b_] += 1

        One_Plot2 = One_Plot2 / One_Sums
        One_Plot2 = np.nan_to_num(One_Plot2)

        print('The time cost for routing')
        print(One_Plot2)
        print('Time cost for budget: 50%, 75%, 100%, 125%, 150%')
        print(One_Plot2.mean(0))
        print('Time cost for distance: 0-5km, 5-10km, 10-25km, 25-35km')
        print(One_Plot2.mean(1))
Example #4
0
class Modified():
    def __init__(self, policy_path, true_path, virtual_path, edge_desty,
                 subpath, axes_file, speed_file, query_name):
        self.sigma = 30
        self.vopt = VOpt()
        self.B = 3
        self.policy_path = policy_path
        self.true_path = true_path
        self.virtual_path = virtual_path
        self.edge_desty = edge_desty
        self.subpath = subpath
        self.axes_file = axes_file
        self.speed_file = speed_file
        self.speed = 50
        self.query_name = query_name

    def add_tpath(self, ):
        with open(self.subpath + self.true_path) as fn:
            gt_path_ = json.load(fn)
        gt_path = {}
        for gt in gt_path_:
            a = gt.find('-')
            a1 = gt[:a]
            b = gt.rfind('-')
            b1 = gt[b + 1:]
            gt_key = a1 + '-' + b1
            nw_key = list(gt_path_[gt].keys())
            nw_value = list(gt_path_[gt].values())
            lens1 = len(gt.split(';'))
            if gt_key not in gt_path:
                gt_path[gt_key] = [
                    str(gt), gt_path_[gt], lens1, nw_key[0], a1, b1
                ]
            else:
                ex_path = gt_path[gt_key]
                #lens2 = len(ex_path[0].split(';'))
                mins = min(len(ex_path[1]), len(gt_path_[gt]))
                ex_key = list(ex_path.keys())
                ex_value = list(ex_path.values())
                a, b = 0, 0
                for i in range(mins):
                    if float(ex_key[i]) < float(nw_key[i]):
                        a += 1
                    elif float(ex_key[i]) > float(nw_key[i]):
                        b += 1
                    else:
                        if float(ex_value[i]) > float(nw_value[i]):
                            a += 1
                        else:
                            b += 1
                if lens1 < gt_path[gt_key][2]: b += 1
                elif lens1 > gt_path[gt_key][2]: a += 1
                if a < b:
                    gt_path[gt_key] = [
                        str(gt), gt_path_[gt], lens1, nw_key[0], a1, b1
                    ]

        return gt_path, gt_path_

    def get_axes(self, ):
        fo = open(self.axes_file)
        points = {}
        for line in fo:
            line = line.split('\t')
            points[line[0]] = (float(line[2]), float(line[1]))
        return points

    def get_distance(self, points, point):
        (la1, lo1) = points[point[0]]
        (la2, lo2) = points[point[1]]
        return geodesic((lo1, la1), (lo2, la2)).kilometers

    def get_dict(self, ):
        path_desty = {}
        for l in range(1, 5):
            with open(self.subpath + self.virtual_path +
                      '_%d.json' % l) as js_file:
                path_desty_ = json.load(js_file)
            path_desty.update(path_desty_)

        with open(self.subpath + self.edge_desty) as js_file:
            edge_desty = json.load(js_file)
            edge_desty = dict(
                sorted(edge_desty.items(), key=operator.itemgetter(0)))
        vedge_desty = {}
        for p_k in path_desty:
            vedge_desty[p_k] = path_desty[p_k][0][1]
        return vedge_desty, edge_desty, path_desty

    def get_speed(self, ):
        speed_dict = {}
        with open(self.speed_file) as fn:
            for line in fn:
                line = line.strip().split('\t')
                speed_dict[line[0]] = {
                    3600 * float(line[1]) / float(line[2]): 1.0
                }
        return speed_dict

    def get_graph(self, edge_desty, gt_path, vedge_desty):
        speed_dict = self.get_speed()
        all_nodes, all_edges = set(), set()
        for key in speed_dict:
            line = key.split('-')
            all_nodes.add(line[0])
            all_nodes.add(line[1])
            all_edges.add(key)
        all_nodes, all_edges = list(all_nodes), list(all_edges)
        All_edges = []
        for edge in all_edges:
            edge_ = edge.split('-')
            if edge in edge_desty:
                cost1 = edge_desty[edge].keys()
                cost = min(float(l) for l in cost1)
                All_edges.append((edge_[0], edge_[1], cost))
            elif edge in speed_dict:
                cost1 = speed_dict[edge].keys()
                cost = min(float(l) for l in cost1)
                All_edges.append((edge_[0], edge_[1], cost))
        G2 = nx.DiGraph()
        G2.add_nodes_from(all_nodes)
        G2.add_weighted_edges_from(All_edges)

        for gt_ in gt_path:
            #edges.append((gt_path[gt_][-2], gt_path[gt_][-1], abs(float(gt_path[gt_][3]))))
            All_edges.append((gt_path[gt_][-2], gt_path[gt_][-1],
                              abs(float(gt_path[gt_][3]))))
            All_edges.append((gt_path[gt_][-1], gt_path[gt_][-2],
                              abs(float(gt_path[gt_][3]))))
            temp_edge = gt_path[gt_][-2] + '-' + gt_path[gt_][-1]
            temp_edge2 = gt_path[gt_][-1] + '-' + gt_path[gt_][-2]
            if temp_edge not in edge_desty:
                edge_desty[temp_edge] = {abs(float(gt_path[gt_][3])): 1.0}
            if temp_edge2 not in edge_desty:
                edge_desty[temp_edge2] = {abs(float(gt_path[gt_][3])): 1.0}

        G = nx.DiGraph()
        G.add_nodes_from(all_nodes)
        G.add_weighted_edges_from(All_edges)
        for edge in speed_dict:
            if edge not in edge_desty:
                edge_desty[edge] = speed_dict[edge]
        return all_edges, all_nodes, G, G2, speed_dict

    def conv(self, A, B):
        D = {}
        for a_k in A:
            for b_k in B:
                n_k = float(a_k) + float(b_k)
                n_v = float(A[a_k]) * float(B[b_k])
                D[n_k] = n_v
        if len(D) <= 3:
            return D
        D = dict(sorted(D.items(), key=operator.itemgetter(0)))
        new_w = self.vopt.v_opt(list(D.keys()), list(D.values()), self.B)
        new_w = dict(sorted(new_w.items(), key=operator.itemgetter(0)))
        return new_w

    def get_min(self, U, node):
        return np.argwhere(U[node] > 0)[0][0]

    def cosin_distance(self, vector1, vector2):
        dot_product = 0.0
        normA = 0.0
        normB = 0.0
        for a, b in zip(vector1, vector2):
            dot_product += a * b
            normA += a**2
            normB += b**2
        if normA == 0.0 or normB == 0.0:
            return None
        else:
            return dot_product / ((normA * normB)**0.5)

    def get_dijkstra3(self, G, target):
        Gk = G.reverse()
        inf = float('inf')
        D = {target: 0}
        Que = PQDict(D)
        P = {}
        nodes = Gk.nodes
        U = set(nodes)
        while U:
            #print('len U %d'%len(U))
            #print('len Q %d'%len(Que))
            if len(Que) == 0: break
            (v, d) = Que.popitem()
            D[v] = d
            U.remove(v)
            #if v == target: break
            neigh = list(Gk.successors(v))
            for u in neigh:
                if u in U:
                    d = D[v] + Gk[v][u]['weight']
                    if d < Que.get(u, inf):
                        Que[u] = d
                        P[u] = v
        return P

    def get_modified_one_to_all3(self, G, target):
        Gk = G.reverse()
        inf = float('inf')
        D = {target: 0}
        Que = PQDict(D)
        P = {}
        nodes = Gk.nodes
        U = set(nodes)
        while U:
            #print('len U %d'%len(U))
            #print('len Q %d'%len(Que))
            if len(Que) == 0: break
            (v, d) = Que.popitem()
            D[v] = d
            U.remove(v)
            #if v == target: break
            neigh = list(Gk.successors(v))
            for u in neigh:
                if u in U:
                    d = D[v] + Gk[v][u]['weight']
                    if d < Que.get(u, inf):
                        Que[u] = d
                        P[u] = v

        return P

    def rout(self, start, desti, edge_desty, vedge_desty, speed_dict,
             nodes_order, U, G, G2, points, gt_path, gt_path_, pred):
        Q, P_hat = [], []
        neigh = list(G2.successors(start))
        print('neigh %d' % len(neigh))
        start_ax = points[start]
        desti_ax = points[desti]
        s_d_arr = [desti_ax[0] - start_ax[0], desti_ax[1] - start_ax[1]]
        all_expire = 0.0

        def get_weight(p_hat):
            w_p_hat = {}
            if p_hat in edge_desty:
                w_p_hat = edge_desty[p_hat]
            elif p_hat in gt_path:
                w_p_hat = gt_path[p_hat][1]
            elif p_hat in vedge_desty:
                w_p_hat = vedge_desty[p_hat]
                #print('vedge %s' %p_hat)
            elif p_hat in speed_dict:
                w_p_hat = speed_dict[p_hat]
            if len(w_p_hat) == 0:
                print('zero %s' % p_hat)
            return w_p_hat

        def get_maxP3(w_p_, vv, vi_getmin):
            p_max = 0.0
            for pk in w_p_:
                w_pk = w_p_[pk]
                pk_ = int(int(pk) / self.sigma)
                if int(pk) % self.sigma == 0: pk_ += 1
                if (1.0 * self.T - float(pk)) > vi_getmin:
                    p_max += float(w_pk)
            return p_max

        def get_vigetmin2(vv):
            start1 = time.time()
            v = vv
            path_ = [v]
            while v != desti:
                v = pred[v]  #[2]
                path_.append(v)
            paths_ = []
            spath = path_[0]
            vi_getmin = 0.0
            expire_time = time.time() - start1
            for epath in path_[1:]:
                key = spath + '-' + epath
                if key in edge_desty:
                    vi_getmin += min(
                        abs(float(l)) for l in edge_desty[key].keys())
                elif key in speed_dict:
                    vi_getmin += min(
                        abs(float(l)) for l in speed_dict[key].keys())
                elif key in gt_path:
                    vi_getmin += min(
                        abs(float(l)) for l in gt_path[p_hat][1].keys())
                else:
                    print('edge not in here')
                spath = epath
            return vi_getmin, expire_time

        has_visit = set()
        has_visit.add(start)
        Que = PQDict.maxpq()
        Q = {}
        for vi in neigh:
            if vi in has_visit: continue
            else: has_visit.add(vi)
            p_hat = start + '-' + vi
            w_p_hat = get_weight(p_hat)
            w_min = min([float(l) for l in w_p_hat.keys()])
            p_order = nodes_order[vi]  #p_hat]
            vi_getmin, ex_p = get_vigetmin2(vi)
            all_expire += ex_p
            cost_time = w_min + vi_getmin
            if cost_time <= self.T:
                p_max = max(list(w_p_hat.values()))
                Que[p_hat] = p_max
                Q[p_hat] = (p_max, w_p_hat, cost_time)
        print('len Q %d' % len(Q))
        QQ = {}
        p_best_p, flag = 'none', False
        p_max_m, p_best_cost, p_w_p = -1, -1, -1
        if len(Q) == 0: return 'none1', -1, -1, -1, all_expire, -1
        all_rounds = 0
        while len(Q) != 0:
            (p_hat, pqv) = Que.popitem()
            all_rounds += 1
            (p_max, w_p_hat, cost_time) = Q[p_hat]
            del Q[p_hat]
            a = p_hat.rfind('-')
            v_l = p_hat[a + 1:]
            if v_l == desti:
                p_best_p = p_hat
                p_max_m = p_max
                p_best_cost = cost_time
                p_w_p = w_p_hat
                flag = True
                break
            neigh = list(G2.successors(v_l))
            if len(w_p_hat.keys()) == 0:
                print(w_p_hat)
                print(p_hat)
            cost_sv = min([float(l) for l in w_p_hat.keys()])
            vd_d_arr = [
                points[desti][0] - points[v_l][0],
                points[desti][1] - points[v_l][1]
            ]
            for u in neigh:
                if u == desti:
                    vu = v_l + '-' + u
                    w_vu = get_weight(vu)
                    if len(w_vu) == 0: cost_vu = 0
                    else: cost_vu = min([float(l) for l in w_vu.keys()])
                    vi_getmin, ex_p = get_vigetmin2(u)
                    all_expire += ex_p
                    p_best_p = p_hat + ';' + vu
                    p_w_p = self.conv(w_p_hat, w_vu)
                    p_max_m = max(list(p_w_p.values()))
                    p_best_cost = cost_sv + cost_vu + vi_getmin  #inx_min*self.sigma
                    flag = True
                    break
                if u in has_visit:
                    #print('u1 %s'%u)
                    continue
                else:
                    has_visit.add(u)
                if u in p_hat:
                    #print('u2 %s'%u)
                    continue
                vu = v_l + '-' + u
                w_vu = get_weight(vu)
                if len(w_vu) == 0:
                    #print('vu %s'%vu)
                    continue
                cost_vu = min([float(l) for l in w_vu.keys()])
                p_order = nodes_order[u]  #p_hat]
                vi_getmin, ex_p = get_vigetmin2(u)
                all_expire += ex_p
                cost_time = cost_sv + cost_vu + vi_getmin  #inx_min*self.sigma
                if cost_time <= self.T:
                    p_hat_p = p_hat + ';' + vu
                    w_p_hat_p = self.conv(w_p_hat, w_vu)
                    p_hat_max = max(list(w_p_hat_p.values()))
                    QQ[p_hat_p] = (p_hat_max, w_p_hat_p, cost_time)
            if flag: break
            if len(Q) == 0:
                Q = copy.deepcopy(QQ)
                for qqk in QQ:
                    Que[qqk] = QQ[qqk][0]
                QQ = {}
        return p_best_p, p_max_m, p_best_cost, p_w_p, all_expire, all_rounds

    def main(self, ):
        vedge_desty, edge_desty, path_desty = self.get_dict()
        gt_path, gt_path_ = self.add_tpath()
        #print('len of edge_desty: %d'%len(edge_desty))
        edges, nodes, G, G2, speed_dict = self.get_graph(
            edge_desty, gt_path, vedge_desty)
        #print('len of edge_desty2: %d'%len(edge_desty))
        points = self.get_axes()
        df2 = open(self.query_name, 'rb')
        r_pairs = pickle.load(df2)
        df2.close()
        nodes_order, i = {}, 0
        for node in nodes:
            nodes_order[node] = i
            i += 1
        One_Plot2 = np.zeros(20).reshape(4, 5)
        One_Sums = np.zeros(20).reshape(4, 5)
        one_dis = -1
        cate = ['0-5km', '5-10km', '10-25km', '25-35km']
        for pairs in r_pairs:
            one_dis += 1
            #print('one_dis : %d'%one_dis)
            print('distance category %s' % cate[one_dis])

            tstart = time.time()
            #print('len pairs %d'%len(pairs))
            all_expires = 0.0
            for pair_ in pairs:
                print('o-d pair: %s' % pair_[0] + '-' + pair_[1])
                start, desti = pair_[-2], pair_[-1]
                pred2 = self.get_modified_one_to_all3(G, desti)
                path_2, st1 = [start], start
                while st1 != desti:
                    st2 = st1
                    st1 = pred2[st1]  #[2]
                    path_2.append(st1)
                at = 0
                for st2 in path_2[1:]:
                    sedge = st1 + '-' + st2
                    if sedge in gt_path:
                        at += 1

                pred = self.get_dijkstra3(G, desti)
                path_, st1 = [start], start
                distan2 = 0
                while st1 != desti:
                    st2 = st1
                    st1 = pred[st1]
                    path_.append(st1)
                    distan2 += self.get_distance(points, (st2, st1))
                distan = self.get_distance(points, (start, desti))
                st_key = start + '+' + desti + ':' + str(distan) + ':' + str(
                    distan2) + ':' + str(len(pred2)) + ':' + str(at)
                st1, time_budget = start, 0.0
                print(path_)
                for st2 in path_[1:]:
                    sedge = st1 + '-' + st2
                    if sedge in edge_desty:
                        speed_key = list(
                            [float(l) for l in edge_desty[sedge].keys()])
                        time_budget += max(speed_key)
                    elif sedge in speed_dict:
                        speed_key = list(
                            [float(l) for l in speed_dict[sedge].keys()])
                        time_budget += max(speed_key)
                    else:
                        print(' edge: %s not in speed_dict, exit' % sedge)
                        sys.exit()
                    st1 = st2
                print('time budget: %f' % time_budget)

                for t_b_, t_b in enumerate([0.5, 0.75, 1.0, 1.25, 1.5]):
                    self.T = time_budget * t_b
                    tstart = time.time()
                    best_p, max_m, best_c, best_pw, all_expire, all_rounds = self.rout(
                        start, desti, edge_desty, vedge_desty, speed_dict,
                        nodes_order, '', G, G2, points, gt_path, gt_path_,
                        pred2)
                    all_expires += all_expire
                    if best_p == 'none1': continue
                    if not isinstance(best_pw, dict): continue
                    tend = time.time()

                    One_Plot2[one_dis][t_b_] += tend - tstart - all_expire
                    One_Sums[one_dis][t_b_] += 1

        One_Plot2 = One_Plot2 / One_Sums
        One_Plot2 = np.nan_to_num(One_Plot2)

        print('The success account')
        print(One_Sums)
        print('The time cost for routing')
        print(One_Plot2)
        print('Time cost for budget: 50%, 75%, 100%, 125%, 150%')
        print(One_Plot2.mean(0))
        print('Time cost for distance: 0-5km, 5-10km, 10-25km, 25-35km')
        print(One_Plot2.mean(1))
Example #5
0
class PaceRout():
    def __init__(self, policy_path, true_path, virtual_path, edge_desty,
                 subpath, axes_file, speed_file, query_name):
        self.sigma = 30
        self.vopt = VOpt()
        self.B = 3
        self.policy_path = policy_path
        self.true_path = true_path
        self.virtual_path = virtual_path
        self.edge_desty = edge_desty
        self.subpath = subpath
        self.axes_file = axes_file
        self.speed_file = speed_file
        self.speed = 50
        self.query_name = query_name

    def get_axes(self, ):
        fo = open(self.axes_file)
        points = {}
        for line in fo:
            line = line.split('\t')
            points[line[0]] = (float(line[2]), float(line[1]))
        return points

    def get_distance(self, points, point):
        (la1, lo1) = points[point[0]]
        (la2, lo2) = points[point[1]]
        return geodesic((lo1, la1), (lo2, la2)).kilometers

    def get_dict(self, ):
        path_desty = {}
        for l in range(1, 5):
            with open(self.subpath + self.virtual_path +
                      '_%d.json' % l) as js_file:
                path_desty_ = json.load(js_file)
            path_desty.update(path_desty_)
        with open(self.subpath + self.edge_desty) as js_file:
            edge_desty = json.load(js_file)
            edge_desty = dict(
                sorted(edge_desty.items(), key=operator.itemgetter(0)))
        vedge_desty = {}
        for p_k in path_desty:
            vedge_desty[p_k] = path_desty[p_k][0][1]
        return vedge_desty, edge_desty, path_desty

    def get_speed(self, ):
        speed_dict = {}
        with open(self.speed_file) as fn:
            for line in fn:
                line = line.strip().split('\t')
                speed_dict[line[0]] = {
                    3600 * float(line[1]) / float(line[2]): 1.0
                }
        return speed_dict

    def get_graph2(self, edge_desty, vedge_desty, r_pairs, points):
        speed_dict = self.get_speed()
        all_nodes, all_edges = set(), set()
        for key in speed_dict:
            line = key.split('-')
            all_nodes.add(line[0])
            all_nodes.add(line[1])
            all_edges.add(key)
        All_edges = []
        for edge in all_edges:
            edge_ = edge.split('-')
            if edge in edge_desty:
                cost1 = edge_desty[edge].keys()
                cost = min(float(l) for l in cost1)
                All_edges.append((edge_[0], edge_[1], cost))
            elif edge in speed_dict:
                cost1 = speed_dict[edge].keys()
                cost = min(float(l) for l in cost1)
                All_edges.append((edge_[0], edge_[1], cost))
        for edge in edge_desty:
            #edge_ = edge.split('-')
            if edge not in speed_dict:
                print(edge)
        G2 = nx.DiGraph()
        G2.add_nodes_from(all_nodes)
        G2.add_weighted_edges_from(All_edges)

        temp_edges = set()
        for pairs in r_pairs:
            for pair in pairs:
                stedge = pair[-2] + '-' + pair[-1]
                #print(stedge)
                temp_edges.add(stedge)

        for edge in vedge_desty:
            if edge not in edge_desty and edge not in speed_dict:
                edge_ = edge.split('-')
                cost1 = vedge_desty[edge].keys()
                cost = min(float(l) for l in cost1)
                All_edges.append((edge_[0], edge_[1], cost))
                all_edges.add(edge)
        print('len of vedge_desty 2: %d' % len(vedge_desty))
        all_nodes, all_edges = list(all_nodes), list(all_edges)
        G = nx.DiGraph()
        G.add_nodes_from(all_nodes)
        G.add_weighted_edges_from(All_edges)
        return all_edges, all_nodes, G, G2, speed_dict

    def conv(self, A, B):
        D = {}
        for a_k in A:
            for b_k in B:
                n_k = int(float(a_k) + float(b_k))
                n_v = float(A[a_k]) * float(B[b_k])
                D[n_k] = n_v
        if len(D) <= 3:
            return D
        D = dict(sorted(D.items(), key=operator.itemgetter(0)))
        new_w = self.vopt.v_opt(list(D.keys()), list(D.values()), self.B)
        new_w = dict(sorted(new_w.items(), key=operator.itemgetter(0)))
        return new_w

    def path_conv(self, prob1, prob2, edge, edge_desty):
        DD = {}
        edge_w = edge_desty[edge]
        wk1, wk2, wk3 = list(prob1.keys()), list(prob2.keys()), list(
            edge_w.keys())
        N, J, M = len(prob1), len(prob2), len(edge_w)
        for n in range(N):
            for j in range(J):
                for m in range(M):
                    n_k = int(wk1[n]) + int(wk2[j]) - int(wk3[m])
                    if n_k < 0: continue
                    #else: n_k = str(n_k)
                    if n_k in DD:
                        DD[n_k] += float(prob1[wk1[n]]) * float(
                            prob2[wk2[j]]) / float(edge_w[wk3[m]])
                    else:
                        DD[n_k] = float(prob1[wk1[n]]) * float(
                            prob2[wk2[j]]) / float(edge_w[wk3[m]])
        if len(DD) <= 3: return DD
        #print(DD)
        DD = dict(sorted(DD.items(), key=operator.itemgetter(0)))
        DD = self.vopt.v_opt(list(DD.keys()), list(DD.values()), self.B)
        DD = dict(sorted(DD.items(), key=operator.itemgetter(0)))
        return DD

    def get_dijkstra(self, G, source, target):
        path = nx.dijkstra_path(G, source, target)
        return path

    def get_last_edge(self, apath):
        a = apath.rfind(';')
        if a == -1: return apath
        else: return apath[a + 1:]

    def rout(self, start, desti, edge_desty, vedge_desty, path_desty,
             nodes_order, U, G, points, speed_dict):
        all_expire = 0.0
        neigh = list(G.successors(start))
        has_visit = set()
        has_visit.add(start)
        Que = PQDict.maxpq()
        Q, QQ = {}, []
        print('neigh : %d' % len(neigh))
        for vi in neigh:
            if vi in has_visit: continue
            else: has_visit.add(vi)
            candidite = start + '-' + vi
            if candidite in edge_desty:
                w_can = edge_desty[candidite]
            elif candidite in speed_dict:
                w_can = speed_dict[candidite]
            elif candidite in vedge_desty:
                w_can = vedge_desty[candidite]
            w_min = min([float(l) for l in w_can.keys()])
            w_exp = 0.0
            for w_k, w_v in w_can.items():
                w_exp += float(w_k) * float(w_v)
            if w_min <= self.T:
                Que[candidite] = w_exp
                Q[candidite] = w_can
        Qkey = list(Q.keys())
        flag = False
        best_path, best_w = None, -1
        bts = time.time()
        all_rounds = 0
        while len(Q) != 0:
            (cand, pqv) = Que.popitem()
            all_rounds += 1
            w_can = Q[cand]
            del Q[cand]
            a = cand.rfind('-')
            v_l = cand[a + 1:]
            if v_l == desti:
                best_path = cand
                best_w = w_can
                flag = True
                break
            if desti in cand:
                a = cand.find('-' + desti)
                best_path = cand[:a + len(desti) + 1]
                best_w = w_can
                flag = True
                break
            neigh = list(G.successors(v_l))
            for u in neigh:
                if u == desti:
                    next_cand = v_l + '-' + u
                    if next_cand in edge_desty:
                        next_w = edge_desty[next_cand]
                    elif next_cand in speed_dict:
                        next_w = speed_dict[next_cand]
                    elif next_cand in vedge_desty:
                        next_w = vedge_desty[next_cand]
                    tcost1 = time.time()
                    next_w_min = min([float(l) for l in next_w.keys()])
                    best_path = cand + ';' + next_cand
                    best_w = self.conv(w_can, next_w)
                    all_expire += time.time() - tcost1
                    flag = True
                    break
                if u in has_visit: continue
                else: has_visit.add(u)
                if u in cand: continue
                next_cand = v_l + '-' + u
                if next_cand in vedge_desty:
                    next_w = vedge_desty[next_cand]
                elif next_cand in edge_desty:
                    next_w = edge_desty[next_cand]
                elif next_cand in speed_dict:
                    next_w = speed_dict[next_cand]

                next_w_min = min([float(l) for l in next_w.keys()])
                if next_w_min <= self.T:
                    new_path = cand + ';' + next_cand
                    temp_1 = cand.rfind(';')
                    if temp_1 != -1:
                        new_p = cand[temp_1 + 1:] + ';' + next_cand
                        if new_p in path_desty:
                            new_path_w = self.path_conv(
                                w_can, path_desty[new_p], cand[tep_1 + 1:],
                                edge_desty)
                        else:
                            new_path_w = self.conv(w_can, next_w)
                    else:
                        new_path_w = self.conv(w_can, next_w)

                    w_exp = 0.0
                    for w_k, w_v in w_can.items():
                        w_exp += float(w_k) * float(w_v)
                    QQ.append((new_path, new_path_w, w_exp))
            last_edge = self.get_last_edge(cand)
            if flag: break
            if len(Q) == 0:
                for QQ_ in QQ:
                    Q[QQ_[0]] = QQ_[1]
                    Que[QQ_[0]] = QQ_[2]
        return best_path, best_w, all_rounds, all_expire

    def get_dijkstra3(self, G, target):
        Gk = G.reverse()
        inf = float('inf')
        D = {target: 0}
        Que = PQDict(D)
        P = {}
        nodes = Gk.nodes
        UU = set(nodes)
        while UU:
            #print('len U %d'%len(U))
            #print('len Q %d'%len(Que))
            if len(Que) == 0: break
            (v, d) = Que.popitem()
            D[v] = d
            UU.remove(v)
            #if v == target: break
            neigh = list(Gk.successors(v))
            for u in neigh:
                if u in UU:
                    d = D[v] + Gk[v][u]['weight']
                    if d < Que.get(u, inf):
                        Que[u] = d
                        P[u] = v
        return P

    def get_U2(self, u_name):
        if u_name in self.hU:
            return self.hU[u_name]
        if not os.path.isfile(self.fpath + u_name):
            #print('no this U : %s'%(self.fpath+u_name))
            print(u_name)
            return {}
        fn = open(self.fpath + u_name)
        U = {}
        for line in fn:
            line = line.strip().split(';')
            U[line[0]] = np.zeros(self.eta)
            if line[1] == '-1' and line[2] == '-1':
                pass
            elif line[1] == '-1' and line[2] == '0':
                U[line[0]] = np.ones(self.eta)
            else:
                for i in range(int(line[1]) + 1, int(line[2])):
                    t = 3 + i - int(line[1]) - 1
                    U[line[0]][i] = float(line[t])
                for i in range(int(line[2]), self.eta):
                    U[line[0]][i] = 1.0
        fn.close()
        self.hU[u_name] = U
        return U

    def main(self, ):
        df2 = open(self.query_name, 'rb')
        r_pairs = pickle.load(df2)
        df2.close()

        vedge_desty, edge_desty, path_desty = self.get_dict()
        points = self.get_axes()
        edges, nodes, G, G2, speed_dict = self.get_graph2(
            edge_desty, vedge_desty, r_pairs, points)

        nodes_order, i = {}, 0
        for node in nodes:
            nodes_order[node] = i
            i += 1

        U = ''
        PT = 5
        One_Plot2 = np.zeros(20).reshape(4, 5)
        One_Sums = np.zeros(20).reshape(4, 5)
        one_dis = -1
        cate = ['0-5km', '5-10km', '10-25km', '25-35km']
        for pairs in r_pairs:
            one_dis += 1
            print('distance category %s' % cate[one_dis])
            tstart2 = time.time()
            #print('len pairs %d'%len(pairs))
            sums2 = 0
            mps, mps2 = 0.0, 0.0
            alls = 0
            cost_t = 0
            for pair_ in pairs:
                #print(pair_)
                print('o-d pair: %s' % pair_[0] + '-' + pair_[1])
                start, desti = pair_[-2], pair_[-1]
                if start == desti:
                    print('wrong: start and desti is same')
                    print(pair_)
                    continue
                start, desti = pair_[-2], pair_[-1]
                pred = self.get_dijkstra3(G2, desti)
                path_, st1 = [start], start
                while st1 != desti:
                    st1 = pred[st1]
                    path_.append(st1)
                st1, time_budget = start, 0.0
                for st2 in path_[1:]:
                    sedge = st1 + '-' + st2
                    if sedge in edge_desty:
                        speed_key = list(
                            [abs(float(l)) for l in edge_desty[sedge].keys()])
                        time_budget += max(speed_key)
                    elif sedge in speed_dict:
                        speed_key = list(
                            [abs(float(l)) for l in speed_dict[sedge].keys()])
                        time_budget += max(speed_key)
                    elif sedge in vedge_desty:
                        speed_key = list(
                            [abs(float(l)) for l in vedge_desty[sedge].keys()])
                        time_budget += max(speed_key)
                    else:
                        print(' edge: %s not in speed_dict, exit' % sedge)
                        sys.exit()
                    st1 = st2

                tend = time.time()
                print('budget %f' % time_budget)
                for t_b_, t_b in enumerate([0.5, 0.75, 1.0, 1.25, 1.5]):
                    tstart = time.time()
                    self.T = time_budget * t_b

                    best_p, best_w, all_rounds, all_expire = self.rout(
                        start, desti, edge_desty, vedge_desty, path_desty,
                        nodes_order, U, G2, points, speed_dict)
                    if best_p == None: continue
                    tend = time.time()

                    One_Plot2[one_dis][t_b_] += tend - tstart
                    One_Sums[one_dis][t_b_] += 1

        One_Plot2 = One_Plot2 / One_Sums
        One_Plot2 = np.nan_to_num(One_Plot2)

        print('The success account')
        print(One_Sums)
        print('The time cost for routing')
        print(One_Plot2)
        print('Time cost for budget: 50%, 75%, 100%, 125%, 150%')
        print(One_Plot2.mean(0))
        print('Time cost for distance: 0-5km, 5-10km, 10-25km, 25-35km')
        print(One_Plot2.mean(1))
Example #6
0
            pvalues = vopt.v_opt(
                time_cost, time_freq,
                B)  # pvalues is a dict, contains new key and value
            dicts[e_key] = pvalues
        else:
            if not is_path:
                k1 = str(int(np.mean(time_cost)))
                pvalues[k1] = 1.0
    return norms(dicts, is_norm)


tpath = TPath(fname)
data = tpath.load()
edge_desty = tpath.get_edge_time_freq(data)

vopt = VOpt()

edge_desty_ = get_vopt(vopt, edge_desty, False, True)

keys = list(edge_desty_.keys())
print(keys[0])
print(edge_desty_[keys[0]])
edge_desty_1 = {}
for edge in edge_desty_:
    #ky = list(edge.keys())
    edge_ = {}
    ky = edge_desty_[edge]
    for k in ky.keys():
        edge_[str(np.abs(k))] = float(ky[k]) / 100
    edge_desty_1[edge] = edge_