def lr_predict(train, test, preprocessing_type):
    # separate class label (last column)
    train, labels = preprocessing.split_labels(train)

    if preprocessing_type == 'smote':
        train, labels = preprocessing.apply_smote(train, labels)

    classifier = linear_model.LogisticRegression()

    validation.cross_validate(classifier, train, labels)
    classifier.fit(train, labels)

    # test
    test, test_labels = preprocessing.split_labels(test)
    validation.test(classifier, test, test_labels)
def multiple_balanced_sets():
    train, test = preprocessing.prepare_data()
    train_list = preprocessing.multiple_balanced_samples(train, 5)
    # separate class label (last column)
    for i in range(5):
        train, labels = preprocessing.split_labels(train_list[i])
        classifier = linear_model.LogisticRegression()
        validation.cross_validate_set(classifier, train, labels)

    validation.cross_validate(classifier, train, labels)
    classifier.fit(train, labels)

    # test
    test, test_labels = preprocessing.split_labels(test)
    validation.test(classifier, test, test_labels)
def nn_predict(train, labels, test, writer, params):

    clf = MLPClassifier(solver='lbfgs', alpha=1.e-3,
                        hidden_layer_sizes=(20,params['layer_2']), random_state=1)
    vresult = validation.cross_validate(clf, train, labels)

    clf.fit(train, labels)

    # test
    test_labels = test[['Class']]
    test_labels = test_labels.values.ravel()
    test = test.drop('Class', 1)
    tresult = validation.test(clf, test, test_labels)

    results = list(params.values())
    results.append(vresult['roc_auc'])
    results.append(vresult['precision'])
    results.append(vresult['recall'])
    results.append(vresult['f1'])
    results.append(vresult['fp'])
    results.append(vresult['fn'])

    results.append(tresult['roc_auc'])
    results.append(tresult['precision'])
    results.append(tresult['recall'])
    results.append(tresult['f1'])
    results.append(tresult['fp'])
    results.append(tresult['fn'])

    writer.writerow(results)
def svm_predict(train, test, preprocessing_type):
    # separate class label (last column)
    train, labels = preprocessing.split_labels(train)

    if preprocessing_type == 'smote':
        train, labels = preprocessing.apply_smote(train, labels)

    # Classifier
    # Class weight parameter: weights positive class more strongly than negative class.
    # class_weight={1: 2.61, 0: 0.383}
    classifier = svm.SVC(kernel='rbf')

    validation.cross_validate(classifier, train, labels)
    classifier.fit(train, labels)

    # test
    test, test_labels = preprocessing.split_labels(test)
    validation.test(classifier, test, test_labels)
Example #5
0
def rf_predict(train, test, preprocessing_type, results_file):
    # separate class label
    train, labels = preprocessing.split_labels(train)

    if preprocessing_type == 'smote':
        train, labels = preprocessing.apply_smote(train, labels)

    classifier = ensemble.RandomForestClassifier(class_weight={
        0: 0.75,
        1: 1.5
    },
                                                 min_samples_split=40,
                                                 n_estimators=15)

    classifier.fit(train, labels)

    vresult = validation.cross_validate(classifier, train, labels)

    # test
    test, test_labels = preprocessing.split_labels(test)
    tresult = validation.test(classifier, test, test_labels)

    # save results
    results = []
    results.append("low_skew (0=0.75, 1=1.5)")
    results.append(40)
    results.append(15)
    results.append(vresult['roc_auc'])
    results.append(vresult['precision'])
    results.append(vresult['recall'])
    results.append(vresult['f1'])
    results.append(vresult['fp'])
    results.append(vresult['fn'])

    results.append(tresult['roc_auc'])
    results.append(tresult['precision'])
    results.append(tresult['recall'])
    results.append(tresult['f1'])
    results.append(tresult['fp'])
    results.append(tresult['fn'])

    results_file.writerow(results)
Example #6
0
print(xTrain.shape, yTrain.shape)

print("Data loaded...")
print("Training data")
print(xTrain)
print(yTrain)

print("Verification data")
print(xTest)
print(yTest)

print("length of x" + str(len(xTrain)))
print("length of y" + str(len(yTrain)))

print("Creating classifiers...")

clf = KNeighborsClassifier()

# Validation
validation.cross_validate(clf, xTrain, yTrain)

clf.fit(xTrain, yTrain)

print("KNeighborsClassifier")
score = clf.score(xTest, yTest)
print(str(score))

# Test
validation.test(clf, xTest, yTest)