Example #1
0
 def _save_model_desc(self):
     search_space = SearchSpace()
     codec = Codec(self.cfg.codec, search_space)
     pareto_front_df = pd.read_csv(
         FileOps.join_path(self.result_path, "pareto_front.csv"))
     codes = pareto_front_df['Code']
     for i in range(len(codes)):
         search_desc = Config()
         search_desc.custom = deepcopy(search_space.search_space.custom)
         search_desc.modules = deepcopy(search_space.search_space.modules)
         code = codes.loc[i]
         search_desc.custom.code = code
         search_desc.custom.method = 'full'
         codec.decode(search_desc.custom)
         self.trainer.output_model_desc(i, search_desc)
Example #2
0
 def _save_model_desc(self):
     """Save final model desc of NAS."""
     pf_file = FileOps.join_path(self.trainer.local_output_path,
                                 self.trainer.step_name, "pareto_front.csv")
     if not FileOps.exists(pf_file):
         return
     with open(pf_file, "r") as file:
         pf = pd.read_csv(file)
     pareto_fronts = pf["encoding"].tolist()
     search_space = SearchSpace()
     codec = QuantCodec('QuantCodec', search_space)
     for i, pareto_front in enumerate(pareto_fronts):
         pareto_front = [int(x) for x in pareto_front[1:-1].split(',')]
         model_desc = Config()
         model_desc.modules = search_space.search_space.modules
         model_desc.backbone = codec.decode(pareto_front)._desc.backbone
         self.trainer.output_model_desc(i, model_desc)