def init_unpickled(self): super(FullBatchLoader, self).init_unpickled() self._original_data_ = memory.Array() self._original_labels_ = [] self._mapped_original_labels_ = memory.Array() self.sources_["fullbatch_loader"] = {} self._global_size = None self._krn_const = numpy.zeros(2, dtype=Loader.LABEL_DTYPE)
def __init__(self, workflow, **kwargs): super(GDRProp, self).__init__(workflow, **kwargs) self.initial_learning_rate = 0.01 self.min_learning_rate = 10**-6 self.max_learning_rate = 1 self.increase = 1.05 self.decrease = 0.80 self.weight_lrs = memory.Array() self.bias_lrs = memory.Array()
def __init__(self, workflow, **kwargs): kwargs["view_group"] = "LOADER" self.last_minibatch = Bool() super(Loader, self).__init__(workflow, **kwargs) self.verify_interface(ILoader) self.prng = kwargs.get("prng", random_generator.get()) if not self.testing: self.shuffle_limit = kwargs.get("shuffle_limit", numpy.iinfo(numpy.uint32).max) else: self.shuffle_limit = 0 self._max_minibatch_size = kwargs.get("minibatch_size", 100) if self._max_minibatch_size < 1: raise ValueError("minibatch_size must be greater than zero") self._class_lengths = [0] * len(CLASS_NAME) self._class_end_offsets = [0] * len(CLASS_NAME) self._has_labels = False self.epoch_ended = Bool() self.epoch_number = 0 self.train_ended = Bool() self.test_ended = Bool() self.samples_served = 0 self._global_offset = 0 self.minibatch_class = 0 self.minibatch_data = memory.Array(shallow_pickle=True) self.minibatch_indices = memory.Array(shallow_pickle=True) self.minibatch_labels = memory.Array(shallow_pickle=True) self._raw_minibatch_labels = [] self._labels_mapping = {} self._reversed_labels_mapping = [] self._samples_mapping = defaultdict(set) self.failed_minibatches = [] self._total_failed = 0 self._on_initialized = nothing self._unique_labels_count = 1 # "None" label self.shuffled_indices = memory.Array() self.normalization_type = kwargs.get("normalization_type", "none") self.normalization_parameters = kwargs.get("normalization_parameters", {}) self.train_ratio = kwargs.get("train_ratio", self.train_ratio)
def __init__(self, workflow, **kwargs): super(LoaderMSEMixin, self).__init__(workflow, **kwargs) self.class_targets = memory.Array() self._minibatch_targets = memory.Array(shallow_pickle=True) self._targets_shape = kwargs.get("targets_shape", tuple()) self.target_normalization_type = kwargs.get( "target_normalization_type", kwargs.get("normalization_type", "none")) if "target_normalization_type" in kwargs and \ self.target_normalization_type != self.normalization_type and \ "target_normalization_parameters" not in kwargs: raise ValueError("You set target_normalization_type in %s which " "is different from normalization_type but did not" " set target_normalization_parameters." % self.target_normalization_type) self.target_normalization_parameters = kwargs.get( "target_normalization_parameters", kwargs.get("normalization_parameters", {}))
def init_unpickled(self): super(FullBatchLoaderMSEMixin, self).init_unpickled() self._original_targets_ = memory.Array() self._kernel_target_ = None self._global_size_target = None