Example #1
0
    def initialize(self, device, **kwargs):
        super(StochasticPoolingBase, self).initialize(device=device, **kwargs)

        if self.uniform is None:
            self.uniform = Uniform(self)

        if self.uniform.output_bytes < (self.output_size << 1):
            if self.uniform.is_initialized:
                raise ValueError(
                    "uniform is already initialized and does not have enough "
                    "output size")
            self.uniform.output_bytes = self.output_size << 1

        self.uniform.initialize(self.device)
Example #2
0
    def initialize(self, device, **kwargs):
        super(StochasticPoolingBase, self).initialize(device=device, **kwargs)

        if self.uniform is None:
            self.uniform = Uniform(self)

        if self.uniform.output_bytes < (self.output_size << 1):
            if self.uniform.is_initialized:
                raise ValueError(
                    "uniform is already initialized and does not have enough "
                    "output size")
            self.uniform.output_bytes = self.output_size << 1

        self.uniform.initialize(self.device)
Example #3
0
class StochasticPoolingBase(OffsetPooling):
    """Stochastic pooling forward propagation.

    Attributes:
        uniform: instance of veles.prng.Uniform.
    """
    MAPPING = set()
    hide_from_registry = True

    def __init__(self, workflow, **kwargs):
        super(StochasticPoolingBase, self).__init__(workflow, **kwargs)
        self.uniform = kwargs.get("uniform")

    def init_unpickled(self):
        super(StochasticPoolingBase, self).init_unpickled()
        self._rand_set = False
        self._rand_arg = 3
        self._kernel_name = "stochastic_pooling"

    def initialize(self, device, **kwargs):
        super(StochasticPoolingBase, self).initialize(device=device, **kwargs)

        if self.uniform is None:
            self.uniform = Uniform(self)

        if self.uniform.output_bytes < (self.output_size << 1):
            if self.uniform.is_initialized:
                raise ValueError(
                    "uniform is already initialized and does not have enough "
                    "output size")
            self.uniform.output_bytes = self.output_size << 1

        self.uniform.initialize(self.device)

    def ocl_init(self):
        super(StochasticPoolingBase, self).ocl_init()
        self.assign_kernel(self._kernel_name)
        self.set_args()

    def cuda_init(self):
        super(StochasticPoolingBase, self).cuda_init()
        self.assign_kernel(self._kernel_name)
        self.set_args()

    def add_ref(self, unit):
        pass

    def numpy_run(self):
        self.uniform.numpy_fill(self.output_size << 1)
        super(StochasticPoolingBase, self).numpy_run()

    def ocl_run(self):
        if not self._rand_set:
            self.set_arg(self._rand_arg, self.uniform.output)
            self._rand_set = True
        self.uniform.ocl_fill(self.output_size << 1)
        super(StochasticPoolingBase, self).ocl_run()

    def cuda_run(self):
        if not self._rand_set:
            self.set_arg(self._rand_arg, self.uniform.output)
            self._rand_set = True
        self.uniform.cuda_fill(self.output_size << 1)
        super(StochasticPoolingBase, self).cuda_run()

    def calculate_position_cpu(self, index, vsum):
        rnd = self.uniform.output.mem.view(dtype=numpy.uint16)[index]
        return rnd * vsum / 65536

    def calculate_random_index_cpu(self, cut, index):
        rnd = self.uniform.output.mem.view(dtype=numpy.uint16)[index]
        return int(rnd * cut.size >> 16)
Example #4
0
class StochasticPoolingBase(OffsetPooling):
    """Stochastic pooling forward propagation.

    Attributes:
        uniform: instance of veles.prng.Uniform.
    """
    MAPPING = set()
    hide_from_registry = True

    def __init__(self, workflow, **kwargs):
        super(StochasticPoolingBase, self).__init__(workflow, **kwargs)
        self.uniform = kwargs.get("uniform")

    def init_unpickled(self):
        super(StochasticPoolingBase, self).init_unpickled()
        self._rand_set = False
        self._rand_arg = 3
        self._kernel_name = "stochastic_pooling"

    def initialize(self, device, **kwargs):
        super(StochasticPoolingBase, self).initialize(device=device, **kwargs)

        if self.uniform is None:
            self.uniform = Uniform(self)

        if self.uniform.output_bytes < (self.output_size << 1):
            if self.uniform.is_initialized:
                raise ValueError(
                    "uniform is already initialized and does not have enough "
                    "output size")
            self.uniform.output_bytes = self.output_size << 1

        self.uniform.initialize(self.device)

    def ocl_init(self):
        super(StochasticPoolingBase, self).ocl_init()
        self.assign_kernel(self._kernel_name)
        self.set_args()

    def cuda_init(self):
        super(StochasticPoolingBase, self).cuda_init()
        self.assign_kernel(self._kernel_name)
        self.set_args()

    def add_ref(self, unit):
        pass

    def numpy_run(self):
        self.uniform.numpy_fill(self.output_size << 1)
        super(StochasticPoolingBase, self).numpy_run()

    def ocl_run(self):
        if not self._rand_set:
            self.set_arg(self._rand_arg, self.uniform.output)
            self._rand_set = True
        self.uniform.ocl_fill(self.output_size << 1)
        super(StochasticPoolingBase, self).ocl_run()

    def cuda_run(self):
        if not self._rand_set:
            self.set_arg(self._rand_arg, self.uniform.output)
            self._rand_set = True
        self.uniform.cuda_fill(self.output_size << 1)
        super(StochasticPoolingBase, self).cuda_run()

    def calculate_position_cpu(self, index, vsum):
        rnd = self.uniform.output.mem.view(dtype=numpy.uint16)[index]
        return rnd * vsum / 65536

    def calculate_random_index_cpu(self, cut, index):
        rnd = self.uniform.output.mem.view(dtype=numpy.uint16)[index]
        return int(rnd * cut.size >> 16)