Example #1
0
def check_model_1(word):
    model=load_model("model2.h5")
    crs=[]
    d={}
    d=verify_enc.initializare_big()
    test = []
    encoding = verify_enc.verify_encoding(word,d)
    litere_mari = verify_enc.count_litere_mari(word)
    litere_mici = verify_enc.count_litere_mici(word)
    litere_peste_f = verify_enc.count_litere_mai_mari_de_f(word)
    count_cifre = verify_enc.count_cifre(word)
    lungime = verify_enc.get_len(word)
    test.append(float(encoding))
    test.append(float(litere_mari))
    test.append(float(litere_mici))
    test.append(float(litere_peste_f))
    test.append(float(lungime))
    #test.append(float(count_cifre))
    crs.append(test)
    X_train=np.array(crs)
    # =============================================================================
    # scaler = StandardScaler()
    # test_scaled=scaler.fit(X_train)
    # =============================================================================
    out = model.predict(crs)
    print (int(out[0][0]))
Example #2
0
def check_model_2(word):
    model=load_model("model3.h5")
    crs=[]
    d={}
    d=verify_enc.initializare(d)
    test = []
    encoding = verify_enc.verify_encoding(word,d)
    test.append(float(encoding))
    #test.append(float(count_cifre))
    crs.append(test)
    X_train=np.array(crs)
    # =============================================================================
    # scaler = StandardScaler()
    # test_scaled=scaler.fit(X_train)
    # =============================================================================
    out = model.predict(crs)
    print (int(out[0][0]))
    print (encoding)
Example #3
0
def check_model_3(word):
    model = load_model("./modules/MachineLearning/models/model4.5.h5")
    crs = []
    d = {}
    d = verify_enc.initializare_extins()
    test = []
    encoding = verify_enc.verify_encoding(word, d)
    if (encoding == None):
        encoding = 0
    litere_mari = verify_enc.count_litere_mari(word)
    litere_mici = verify_enc.count_litere_mici(word)
    litere_peste_f = verify_enc.count_litere_mai_mari_de_f(word)
    lungime = verify_enc.get_len(word)
    cifre = verify_enc.count_cifre(word)
    puncte = verify_enc.count_dots(word)
    minus = verify_enc.count_lines(word)
    underscore = verify_enc.count_underscore(word)
    slash = verify_enc.count_slashes(word)
    entropy = verify_enc.get_entropy(word)
    all_lens = verify_enc.get_every_len(word)
    test.append(float(encoding))
    test.append(float(litere_mari))
    test.append(float(litere_mici))
    test.append(float(litere_peste_f))
    test.append(float(lungime))
    test.append(float(cifre))
    test.append(float(puncte))
    test.append(float(minus))
    test.append(float(underscore))
    test.append(float(slash))
    test.append(float(entropy))
    for z in all_lens:
        test.append(float(z))
    crs.append(test)
    X_train = np.array(crs)
    # =============================================================================
    # scaler = StandardScaler()
    # test_scaled=scaler.fit(X_train)
    # =============================================================================
    out = model.predict(crs)
    return int(out[0][0])
Example #4
0
    
    model2.add(layers.Dense(units=1, activation="sigmoid"))
    X2_train_scaled, Y2_train=shuffle(X2_train_scaled, Y2_train)
    model2.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])
    model2.fit(X2_train_scaled, Y2_train, validation_split=0.1, epochs=5)
    model2.save("model3.h5")
    print ("Am terminat cu al doilea model")
'''

true_ads = verify_enc.read_file('true_extins.csv')
false_ads = verify_enc.read_file('false_extins.csv')

d = {}
d = verify_enc.initializare_extins()
for i in true_ads:
    encoding = verify_enc.verify_encoding(i[0], d)
    litere_mari = verify_enc.count_litere_mari(i[0])
    litere_mici = verify_enc.count_litere_mici(i[0])
    litere_peste_f = verify_enc.count_litere_mai_mari_de_f(i[0])
    lungime = verify_enc.get_len(i[0])
    cifre = verify_enc.count_cifre(i[0])
    puncte = verify_enc.count_dots(i[0])
    minus = verify_enc.count_lines(i[0])
    underscore = verify_enc.count_underscore(i[0])
    slash = verify_enc.count_slashes(i[0])
    entropy = verify_enc.get_entropy(i[0])
    all_lens = verify_enc.get_every_len(i[0])
    array = []
    if (encoding == None):
        encoding = 0
    array.append(float(encoding))