def remove_frame(molecule, frame, sel, filename, steps=[0, -1, 1]): """ Calculates and saves a trajectory for which a given frame is aligned throughout the trajectory. Allows visualization of motion within the frame, in the absence of the frame motion itself. Arguments are the molecule object, frame, which specifies which frame, stored in the molecule object (molecule._vf) should be used (alternatively, one may give the function directly), sel, an MDAnalysis atom group that includes all atoms to be stored, filename, which determines where to store the trajectory, and steps, which determines the start,stop, and step size over the trajectory (as indices) Note, the frame should return only a single frame (defined by one or two vectors) """ uni = molecule.mda_object if frame is None: def f(): return np.atleast_2d([0, 0, 1]).T else: f = frame if hasattr(frame, '__call__') else molecule._vf[frame] nv = 2 if len(f()) == 2 else 1 if steps[1] == -1: steps[1] = uni.trajectory.n_frames index = np.arange(steps[0], steps[1], steps[2]) def pos_fun(): return (sel.positions - sel.positions.mean(axis=0)).T vec = ini_vec_load(uni.trajectory, [f, pos_fun], index=index) v1, v2 = vec['v'][0] if nv == 2 else vec['v'][0], None v1 = apply_index(v1, np.zeros(sel.n_atoms)) if v2 is not None: v2 = apply_index(v1, np.zeros(sel.n_atoms)) v0 = vec['v'][1] sc = vft.getFrame(v1, v2) v0 = vft.R(v0, *vft.pass2act(*sc)).T with mda.Writer(os.path.splitext(filename)[0] + '.pdb', sel.n_atoms) as W: sel.positions = v0[0] W.write(sel) with mda.Writer(filename, sel.n_atoms) as W: for v in v0: sel.positions = v W.write(sel)
def applyFrame(*vecs,nuZ_F=None,nuXZ_F=None): """ Applies a frame, F, to a set of vectors, *vecs, by rotating such that the vector nuZ_F lies along the z-axis, and nuXZ_F lies in the xz-plane. Input is the vectors (as *vecs, so list separately, don't collect in a list), and the frame, defined by nuZ_F (a vector on the z-axis of the frame), and optionally nuXZ_F (a vector on xy-axis of the frame). These must be given as keyword arguments. vecs_F = applyFrame(*vecs,nuZ_F=nuZ_F,nuXZ_F=None,frame_index=None) Note, one may also omit the frame application and just apply a frame index """ if nuZ_F is None: out=vecs else: sc=vft.pass2act(*vft.getFrame(nuZ_F,nuXZ_F)) out=[None if v is None else vft.R(v,*sc) for v in vecs] if len(vecs)==1: return out[0] else: return out
def applyFrame(vecs, mode='full'): """ Calculates vectors, which may then be used to determine the influence of each frame on the overall correlation function (via detector analysis) For each frame, we will calculate its trajectory with respect to the previous frame (for example, usually the first frame should be some overall motion and the last frame should be the bonds themselves. The overall motion is calculated w.r.t. the lab frame) ffavg is "Faster-frame averaging", which determines how we take into account the influence of outer frames on the inner frames. ffavg='off' : Neglect influence of outer frames, only calculate behavior of frames with respect to the previous frame ffavg='direction': Apply motion of a given frame onto a vector pointing in the same direction as the tensor obtained by averaging the tensor in the outer frame ffavg='full' : Apply motion using direction, and also scale (currently unavailable...) """ v0 = vecs['v'] nf = len(v0) nt = vecs['t'].size avgs = list() fi = vecs['frame_index'] nb = fi[0].size "Make sure all vectors in v0 have two elements" v0 = [v if len(v) == 2 else [v, None] for v in v0] "Start by updating vectors with the frame index" # v0=[[apply_index(v0[k][0],fi[k]),apply_index(v0[k][1],fi[k])] for k in range(nf)] inan = list() v1 = list() for k in range(nf): a, b = apply_index(v0[k][0], fi[k]) c, _ = apply_index(v0[k][1], fi[k]) inan.append(b) v1.append([a, c]) v0 = v1 vec_out = list() avgs = list() tensors = list() "This is simply the averaged tensors– Not used, just for storage and later plotting" v1, v2 = v0[-1] sc0 = vft.getFrame(v1, v2) Davg = vft.D2(*sc0).mean(axis=-1) #Average of tensor components of frame 0 out = vft.Spher2pars(Davg) #Convert into delta,eta,euler angles tensors.append({ 'delta': out[0], 'eta': out[1], 'euler': out[2:] }) #Returns in a dict tensors[-1].update({'A0': Davg[2]}) """These are the expectation values for the correlation functions of the individual components (m=-2->2) evaluated at infinite time """ v1, _ = v0[-1] #This is the bond direction in the lab frame # Davg=vft.getD2inf(v1) Davg = vft.D2inf_v2(v1) out = vft.Spher2pars(Davg) avgs.append({'delta': out[0], 'eta': out[1], 'euler': out[2:]}) avgs[-1].update({'rho': Davg}) "Next sweep from outer frame in" for k in range(nf - 1): v1, v2 = v0.pop( 0 ) #Here we import the outermost frame (that is, the slowest frame) i = inan.pop( 0) #Here we remove motion from positions in this frame for NaN v1[0][i] = 0 #Frames with NaN here point along z for all times v1[1][i] = 0 v1[2][i] = 1 if v2 is not None: #Frames with NaN here point along x for all times v2[0][i] = 1 v2[1][i] = 0 v2[2][i] = 0 "Get the euler angles of the outermost frame" sc = vft.getFrame( v1, v2 ) #Cosines and sines of alpha,beta,gamma (6 values ca,sa,cb,sb,cg,sg) """Apply rotations to all inner frames- that is, all inner frames are given in the outer frame Keep in mind that averaged tensors inside this frame are no longer expressed in the lab frame" This is later taken care of in """ vnew = list() for v in v0: v1, v2 = v "Switch active to passive, apply rotation to all inner vectors" sci = vft.pass2act(*sc) vnew.append([vft.R(v1, *sci), vft.R(v2, *sci)]) scx = np.array(vft.getFrame(v0[-1][0])).swapaxes(1, 2) v0 = vnew #Replace v0 for the next step v1, _ = v0[-1] #This is the bond direction in the current frame "Averaged tensors from last frame- Not using this, just for record keeping" sc0 = vft.getFrame(v1) Davg = vft.D2(*sc0).mean( axis=-1) #Average of tensor components of frame 0 out = vft.Spher2pars(Davg) #Convert into delta,eta,euler angles tensors.append({ 'delta': out[0], 'eta': out[1], 'euler': out[2:] }) #Returns in a dict tensors[-1].update({'rho': Davg}) "D2 evaluated at infinite time of last frame" # D2inf=vft.getD2inf(v1) #Average D2 components in current frame at infinite time D2inf = vft.D2inf_v2(v1) out = vft.Spher2pars(D2inf) avgs.append({'delta': out[0], 'eta': out[1], 'euler': out[2:]}) avgs[-1].update({'rho': D2inf}) if mode[0].lower() == 'z': vZ = vft.R( np.array([0, 0, 1]), *avgs[-1]['euler']) #Average of outer frame (usually bond) vZ = vft.R(np.atleast_3d(vZ).repeat(nt, axis=2), *sc) #Apply rotation of current frame to outer frame vZ = vZ.swapaxes(1, 2) vec_out.append({'vZ': vZ, 't': vecs['t'], 'index': vecs['index']}) else: # vX=vft.R(np.array([1,0,0]),*sc) # vY=vft.R(np.array([0,1,0]),*sc) # vZ=vft.R(np.array([0,0,1]),*sc) # vX=vX.swapaxes(1,2) # vY=vY.swapaxes(1,2) # vZ=vZ.swapaxes(1,2) # # sci=np.array(vft.euler_prod([sc,vft.pass2act(*sc0),vft.pass2act(*sc)])).swapaxes(1,2) # # vec_out.append({'vZ':vZ,'vX':vX,'vY':vY,'t':vecs['t'],'sci':sci,'index':vecs['index']}) sc = np.array(vft.pass2act(*sc)).swapaxes(1, 2) # sc0=np.array(sc0).swapaxes(1,2) vZ = vft.R([0, 0, 1], *scx) vX = vft.R([1, 0, 0], *scx) vY = vft.R([0, 1, 0], *scx) vec_out.append({ 'sc': sc, 'vZ': vZ, 'vX': vX, 'vY': vY, 't': vecs['t'], 'index': vecs['index'] }) v, _ = v0.pop( 0 ) #Operations on all but bond frame result in normalization, but here we have to enforce length v = vft.norm(v) v = v.swapaxes(1, 2) vec_out.append({'vZ': v, 't': vecs['t'], 'index': vecs['index']}) return vec_out, avgs, tensors
def frames2data(mol, frame_funs=None, frame_index=None, mode='full', n=100, nr=10, label=None, dt=None): """ Loads a set of frame functions into several data objects (the number of data objects produced is equal to the number of frames) Frames may be manually produced and included in a list (frame_funs), or alternatively can be loaded into the molecule object itself (mol.new_frame) """ if mode.lower() == 'both': vecs, vecs_z, avgs, tensors = get_vecs(mol, frame_funs=frame_funs, frame_index=frame_index, mode=mode, n=n, nr=nr, dt=dt) else: vecs, avgs, tensors = get_vecs(mol, frame_funs=frame_funs, frame_index=frame_index, mode=mode, n=n, nr=nr, dt=dt) if label is None and frame_funs is None: label = mol._frame_info['label'] data = list() "Here, we get the orientation of all frames at t=0" if frame_funs is None: frame_funs = mol._vf if frame_index is None: frame_index = mol._frame_info['frame_index'] out = ini_vec_load(mol.mda_object.trajectory, frame_funs, frame_index, index=np.array([0])) for q, (v, a, t) in enumerate(zip(vecs, avgs, tensors)): if mode.lower() == 'both': data.append([vec2data(v,a,mode='full',molecule=mol),\ vec2data(vecs_z[q],mode='z',molecule=mol)]) else: data.append(vec2data(v, a, mode=mode, molecule=mol)) if q > 0: v0 = out['v'][q - 1] v1, v2 = v0 if len(v0) == 2 else (v0, None) v1, inan = apply_index(v1, frame_index[q - 1]) v2, _ = apply_index(v2, frame_index[q - 1]) sc1 = vft.getFrame(v1, v2) sc1 = [sc0.squeeze() for sc0 in sc1] rho = vft.Rspher(t['rho'], *sc1) new = vft.Spher2pars(rho, return_angles=True) avg_tensors = { 'delta': new[0], 'eta': new[1], 'euler': new[2:], 'rho': t['rho'] } else: avg_tensors = t out1 = out.copy() i = np.concatenate((np.arange(q), [len(vecs) - 1])) out1['v'] = [out1['v'][k] for k in i] out1['frame_index'] = [out1['frame_index'][k] for k in i] vecs1, _, _ = applyFrame(out1) # sc=[vft.getFrame(v['vZ'],v['vX']) for v in vecs1[:-1]] sc = [vft.pass2act(*v['sc']) for v in vecs1[:-1]] sc.append(vft.getFrame(vecs1[-1]['vZ'])) rho = a['rho'] for sc0 in sc[::-1]: rho = vft.Rspher(rho, *sc0) new = vft.Spher2pars(rho.squeeze(), return_angles=True) D2inf = { 'delta': new[0], 'eta': new[1], 'euler': new[2:], 'rho': a['rho'] } if mode.lower() == 'both': if label is not None: data[-1][0].label = label data[-1][1].label = label data[-1][0].vars['D2inf'] = D2inf data[-1][1].vars['D2inf'] = D2inf data[-1][0].vars['avg_tensors'] = avg_tensors data[-1][1].vars['avg_tensors'] = avg_tensors else: if label is not None: data[-1].label = label data[-1].vars['D2inf'] = D2inf data[-1].vars['avg_tensors'] = avg_tensors if mode.lower() == 'both': data = [[d[0] for d in data], [d[1] for d in data]] return data
def applyFrame2(vecs,return_avgs=True,tensor_avgs=True): """ Calculates vectors, which may then be used to determine the influence of each frame on the overall correlation function (via detector analysis) For each frame, we will calculate its trajectory with respect to the previous frame (for example, usually the first frame should be some overall motion and the last frame should be the bonds themselves. The overall motion is calculated w.r.t. the lab frame) ffavg is "Faster-frame averaging", which determines how we take into account the influence of outer frames on the inner frames. ffavg='off' : Neglect influence of outer frames, only calculate behavior of frames with respect to the previous frame ffavg='direction': Apply motion of a given frame onto a vector pointing in the same direction as the tensor obtained by averaging the tensor in the outer frame ffavg='full' : Apply motion using direction, and also scale (currently unavailable...) """ v0=vecs['v'] nf=len(v0) nt=vecs['t'].size avgs=list() fi=vecs['frame_index'] nb=fi[0].size "Make sure all vectors in v0 have two elements" v0=[v if len(v)==2 else [v,None] for v in v0] "Start by updating vectors with the frame index" # v0=[[apply_index(v0[k][0],fi[k]),apply_index(v0[k][1],fi[k])] for k in range(nf)] inan=list() v1=list() for k in range(nf): a,b=apply_index(v0[k][0],fi[k]) c,_=apply_index(v0[k][1],fi[k]) inan.append(b) v1.append([a,c]) v0=v1 vec_out=list() avgs=list() tensors=list() if tensor_avgs: "This is simply the averaged tensors" v1,v2=v0[-1] sc0=vft.getFrame(v1,v2) Davg=vft.D2(*sc0).mean(axis=-1) #Average of tensor components of frame 0 out=vft.Spher2pars(Davg) #Convert into delta,eta,euler angles tensors.append({'delta':out[0],'eta':out[1],'euler':out[2:]}) #Returns in a dict tensors[-1].update({'rho':Davg}) if return_avgs: """These are the expectation values for the correlation functions of the individual components (m=-2->2) evaluated at infinite time """ v1,_=v0[-1] D2inf=vft.getD2inf(v1) sc0=[sc0.squeeze() for sc0 in vft.getFrame(v1[:,:,:1])] sc0[0]=1 #Set alpha to zero (not -gamma) sc0[1]=0 A0=D2inf[2] D2inf=vft.Rspher(D2inf,*sc0) out=vft.Spher2pars(D2inf) avgs.append({'delta':out[0],'eta':out[1],'euler':out[2:]}) avgs[-1].update({'rho':D2inf}) "Next sweep from outer frame in" for k in range(nf-1): v1,v2=v0.pop(0) #Should have two vectors (or v1 and None) i=inan.pop(0) #Here we remove motion from positions in this frame for NaN v1[0][i]=0 v1[1][i]=0 v1[2][i]=1 if v2 is not None: v2[0][i]=1 v2[1][i]=0 v2[2][i]=0 "Get the euler angles" sc=vft.getFrame(v1,v2) #Cosines and sines of alpha,beta,gamma (6 values ca,sa,cb,sb,cg,sg) "Apply rotations to all inner frames" vnew=list() for v in v0: v1,v2=v "Switch active to passive, apply rotation to all inner vectors" sci=vft.pass2act(*sc) vnew.append([vft.R(v1,*sci),vft.R(v2,*sci)]) v0=vnew #Replace v0 for the next step "Averaged tensor from LAST frame" if tensor_avgs: v1,v2=v0[-1] sc0=vft.getFrame(v1,v2) Davg=vft.D2(*sc0).mean(axis=-1) #Average of tensor components of frame 0 out=vft.Spher2pars(Davg) #Convert into delta,eta,euler angles tensors.append({'delta':out[0],'eta':out[1],'euler':out[2:]}) #Returns in a dict tensors[-1].update({'rho':D2inf}) v1,_=v0[-1] D2inf=vft.getD2inf(v1) sc0=[sc0.squeeze() for sc0 in vft.getFrame(v1[:,:,:1])] sc0[0]=1 #Set alpha to 0 (as opposed to -gamma) sc0[1]=0 A0=D2inf[2] D2inf=vft.Rspher(D2inf,*sc0) out=vft.Spher2pars(D2inf) avgs.append({'delta':out[0],'eta':out[1],'euler':out[2:]}) avgs[-1].update({'rho':D2inf}) vZ=vft.R(np.array([0,0,1]),*avgs[-1]['euler']) #Average of outer frame (usually bond) vZ=vft.R(np.atleast_3d(vZ).repeat(nt,axis=2),*sc) #Apply rotation of current frame to outer frame vX=vft.R(np.array([1,0,0]),*avgs[-1]['euler']) #Average of outer frame (usually bond) vX=vft.R(np.atleast_3d(vX).repeat(nt,axis=2),*sc) #Apply rotation of current frame to outer frame vec_out.append({'X':{'X':vX[0].T,'Y':vX[1].T,'Z':vX[2].T},\ 'Z':{'X':vZ[0].T,'Y':vZ[1].T,'Z':vZ[2].T},\ 't':vecs['t'],'index':vecs['index'],'eta':avgs[-1]['eta']}) "Apply to last frame" v,_=v0.pop(0) l=np.sqrt(v[0]**2+v[1]**2+v[2]**2) v=v/l vec_out.append({'X':v[0].T,'Y':v[1].T,'Z':v[2].T,'t':vecs['t'],'index':vecs['index']}) if return_avgs and tensor_avgs: for a in avgs: #Convert to angles e=a['euler'] alpha,beta,gamma=np.arctan2(e[1],e[0]),np.arctan2(e[3],e[2]),np.arctan2(e[5],e[4]) a['euler']=np.concatenate(([alpha],[beta],[gamma]),axis=0) for a in tensors: #Convert to angles e=a['euler'] alpha,beta,gamma=np.arctan2(e[1],e[0]),np.arctan2(e[3],e[2]),np.arctan2(e[5],e[4]) a['euler']=np.concatenate(([alpha],[beta],[gamma]),axis=0) return vec_out,avgs,tensors elif tensor_avgs: for a in tensors: #Convert to angles e=a['euler'] alpha,beta,gamma=np.arctan2(e[1],e[0]),np.arctan2(e[3],e[2]),np.arctan2(e[5],e[4]) a['euler']=np.concatenate(([alpha],[beta],[gamma]),axis=0) return vec_out,tensors elif return_avgs: for a in avgs: #Convert to angles e=a['euler'] alpha,beta,gamma=np.arctan2(e[1],e[0]),np.arctan2(e[3],e[2]),np.arctan2(e[5],e[4]) a['euler']=np.concatenate(([alpha],[beta],[gamma]),axis=0) return vec_out,avgs else: return vec_out
def Ct_finF(vZ,nuZ_f,nuXZ_f=None,m=0,mp=0,nuZ_F=None,nuXZ_F=None,index=None): """ Calculates the correlation function for the motion of a bond due to motion of a frame of a frame f in frame F (or in the lab frame) """ "Some checks of the input data" if m!=0 and mp!=0: print('m or mp must be 0') return "Apply frame F" vZF,nuZ_fF,nuXZ_fF=applyFrame(vZ,nuZ_f,nuXZ_f,nuZ_F=nuZ_F,nuXZ_F=nuXZ_F) "Apply frame f" # vZf=applyFrame(vZ,nuZ_F=nuZ_f,nuXZ_F=nuXZ_f) "Axes to project a bond in frame f into frame F" sc=vft.getFrame(nuZ_fF,nuXZ_fF) vZf=vft.R(vZF,*vft.pass2act(*sc)) eFf=[vft.R([1,0,0],*vft.pass2act(*sc)),\ vft.R([0,1,0],*vft.pass2act(*sc)),\ vft.R([0,0,1],*vft.pass2act(*sc))] "Axes of the bond vector in frame F" if not(m==0 and mp==0): sc=vft.getFrame(vZF) vXF=vft.R([1,0,0],*sc) vYF=vft.R([0,1,0],*sc) n=vZ.shape[-1] if vZ.ndim==2: SZ=2*n else: SZ=[vZ.shape[1],2*n] ft0=np.zeros(SZ,dtype=complex) if mp==-2 or m==2: for ea,ax,ay in zip(eFf,vXF,vYF): for eb,bx,by in zip(eFf,vXF,vYF): for eag,gz in zip(ea,vZf): for ebd,dz in zip(eb,vZf): ftee=FT(eag*ebd,index) ft0+=np.sqrt(3/8)*FT(ax*bx*gz*dz-ay*by*gz*dz-1j*2*ax*by*gz*dz,index).conj()*ftee elif mp==-1 or m==1: for ea,ax,ay in zip(eFf,vXF,vYF): for eb,bz in zip(eFf,vZF): for eag,gz in zip(ea,vZf): for ebd,dz in zip(eb,vZf): ftee=FT(eag*ebd,index) ft0+=np.sqrt(3/2)*FT(ax*bz*gz*dz+1j*ay*bz*gz*dz,index).conj()*ftee elif mp==0 and m==0: for ea,az in zip(eFf,vZF): for eb,bz in zip(eFf,vZF): for eag,gz in zip(ea,vZf): for ebd,dz in zip(eb,vZf): ftee=FT(eag*ebd,index) ft0+=3/2*(FT(az*bz*gz*dz,index).conj()*ftee) elif mp==1 or m==-1: for ea,ax,ay in zip(eFf,vXF,vYF): for eb,bz in zip(eFf,vZF): for eag,gz in zip(ea,vZf): for ebd,dz in zip(eb,vZf): ftee=FT(eag*ebd,index) ft0+=np.sqrt(3/2)*FT(-ax*bz*gz*dz+1j*ay*bz*gz*dz,index).conj()*ftee elif mp==2 or m==-2: for ea,ax,ay in zip(eFf,vXF,vYF): for eb,bx,by in zip(eFf,vXF,vYF): for eag,gz in zip(ea,vZf): for ebd,dz in zip(eb,vZf): ftee=FT(eag*ebd,index) ft0+=np.sqrt(3/8)*FT(ax*bx*gz*dz-ay*by*gz*dz+1j*2*ax*by*gz*dz,index).conj()*ftee "Use to properly normalize correlation function" if index is not None: N=get_count(index) else: N=np.arange(n,0,-1) i=N!=0 N=N[i] "Truncate function to half length" if vZ.ndim==3: ct=np.fft.ifft(ft0)[:,:n] ct=ct[:,i]/N else: ct=np.fft.ifft(ft0)[:n] ct=ct[i]/N "Subtract away 1/2 for m,mp=0" if mp==0 and m==0: ct=ct.real-0.5 return ct
def loop_gen(vZ,vXZ=None,nuZ_f=None,nuXZ_f=None,nuZ_F=None,nuXZ_F=None,m=None): """ Generates the loop items required for calculating correlation functions and equilibrium values. For f in F calculations, vZ and nuZ_f are required, with additional optional arguments nuXZ_f, nuZ_F (calc in LF if omitted), nuXZ_F. If nuZ_f is included, a dictionary with the following keys is returned for each of 81 iterator elements Dictionary keys: eag: "gamma" element of the vector representing the "alpha" axis for projection from frame f into frame F ebd: "delta" element of the vector representing the "beta" axis for projection from frame f into frame F gz: "gamma" element of the bond vector in frame f dz: "delta" element of the bond vector in frame f ax: "alpha" element of the x-axis of the bond axis system in frame F ay: "alpha" element of the y-axis of the bond axis system in frame F az: "alpha" element of the z-axis of the bond axis system in frame F bx: "beta" element of the x-axis of the bond axis system in frame F by: "beta" element of the y-axis of the bond axis system in frame F bz: "beta" element of the z-axis of the bond axis system in frame F For PAS calculations (optionally in frame F), vZ is required, with additional optional arguments nuZ_F (calc in LF if omitted) and nuXZ_F. In this case, a dictionary is returned with the following keys for each of 9 iterator elements Dictionary keys: ax: "alpha" element of the x-axis of the bond axis system ay: "alpha" element of the y-axis of the bond axis system az: "alpha" element of the z-axis of the bond axis system bx: "beta" element of the x-axis of the bond axis system by: "beta" element of the y-axis of the bond axis system bz: "beta" element of the z-axis of the bond axis system If m is provided, only the dictionary elements required for calculating the mth component will be returned loop_gen(vZ,nuZ_f=None,nuXZ_f=None,nuZ_F=None,nuXZ_F=None,m=None) """ "Apply frame F" vZF,vXZF,nuZ_fF,nuXZ_fF=applyFrame(vZ,vXZ,nuZ_f,nuXZ_f,nuZ_F=nuZ_F,nuXZ_F=nuXZ_F) if m!=0: sc=vft.getFrame(vZF,vXZF) vXF=vft.R([1,0,0],*sc) #x and y axes of the bond axes in F vYF=vft.R([0,1,0],*sc) if nuZ_f is None: if m is None or m==-2 or m==2: for ax,ay,az in zip(vXF,vYF,vZF): for bx,by,bz in zip(vXF,vYF,vZF): out={'ax':ax,'ay':ay,'az':az,'bx':bx,'by':by,'bz':bz} yield out elif m==-1 or m==1: for ax,ay,az in zip(vXF,vYF,vZF): for bz in vZF: out={'ax':ax,'ay':ay,'az':az,'bz':bz} yield out elif m==0: for az in vZF: for bz in vZF: out={'az':az,'bz':bz} yield out else: sc=vft.getFrame(nuZ_fF,nuXZ_fF) vZf=vft.R(vZF,*vft.pass2act(*sc)) eFf=[vft.R([1,0,0],*vft.pass2act(*sc)),\ vft.R([0,1,0],*vft.pass2act(*sc)),\ vft.R([0,0,1],*vft.pass2act(*sc))] if m is None: for ea,ax,ay,az in zip(eFf,vXF,vYF,vZF): for eb,bx,by,bz in zip(eFf,vXF,vYF,vZF): for eag,gz in zip(ea,vZf): for ebd,dz in zip(eb,vZf): out={'eag':eag,'ebd':ebd,'ax':ax,'ay':ay,'az':az,\ 'bx':bx,'by':by,'bz':bz,'gz':gz,'dz':dz} yield out elif m==-2 or m==2: for ea,ax,ay in zip(eFf,vXF,vYF): for eb,bx,by in zip(eFf,vXF,vYF): for eag,gz in zip(ea,vZf): for ebd,dz in zip(ea,vZf): out={'eag':eag,'ebd':ebd,'ax':ax,'ay':ay,\ 'bx':bx,'by':by,'gz':gz,'dz':dz} yield out elif m==-1 or m==1: for ea,ax,ay in zip(eFf,vXF,vYF): for eb,bz in zip(eFf,vZF): for eag,gz in zip(ea,vZf): for ebd,dz in zip(eb,vZf): out={'eag':eag,'ebd':ebd,'ax':ax,'ay':ay,\ 'bz':bz,'gz':gz,'dz':dz} yield out elif m==0: for ea,az in zip(eFf,vZF): for eb,bz in zip(eFf,vZF): for eag,gz in zip(ea,vZf): for ebd,dz in zip(eb,vZf): out={'eag':eag,'ebd':ebd,'az':az,\ 'bz':bz,'gz':gz,'dz':dz} yield out