Example #1
0
def save_video_to_milvus(video_path, video_name, table_name=const.MILVUS_KEYFRAME_TABLE):
    client = milvus_util.milvus_client()
    frames_path, duration = extract_frame(file_path=video_path, fps=5, video_name=video_name)
    print(frames_path)
    feats, names, urls = feature_extract_batch(database_path=frames_path, model=VGGNet())
    duration_time = [re.split('[TF.]', time)[len(re.split('[TF.]', time)) - 3] for time in names]
    status, feats_ids = milvus_util.insert_vectors(client=client, table_name=table_name, vectors=feats)
    return status, feats_ids, urls, duration_time, duration
Example #2
0
def run_validation(checkpoint_file, model_name):
    test_data, test_labels, _ = get_inputs_crop_flip('val')
    print("Retrieved validation data successfully")
    sample_size = get_size('val')

    keep_prob = 1.
    if model_name == 'AlexNet':
        model = AlexNetSmall(keep_prob)
    elif model_name == 'VGGNet':
        model = VGGNet(keep_prob)
    else:
        raise Exception('Not a valid model name')

    x = tf.placeholder(TYPE, shape=(BATCH_SIZE, IMAGE_FINAL_SIZE, IMAGE_FINAL_SIZE, NUM_CHANNELS), name='input')
    logits, variables = model.model(x)
    prediction = tf.nn.softmax(logits)

    batch_data, batch_labels = tf.train.batch(
        [test_data, test_labels],
        batch_size=BATCH_SIZE,
        capacity=5*BATCH_SIZE
        )

    if USE_GPU:
        config = tf.ConfigProto()
    else:
        config = tf.ConfigProto(device_count={'GPU': 0})
    saver = tf.train.Saver()

    with tf.Session(config=config) as sess:

        # Restore variables
        saver.restore(sess=sess, save_path=checkpoint_file)
        print("Restored variables from checkpoint %s" % checkpoint_file)

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        predictions = []
        labels = []

        for step in range(sample_size // BATCH_SIZE):
            _data, _labels = sess.run([batch_data, batch_labels])
            _data = np.swapaxes(_data,0,1)
            single_prediction = []
            for i in range(8):
                test_feed_dict = {x: _data[i]}
                test_predictions = sess.run(prediction, feed_dict=test_feed_dict)
                single_prediction.append(test_predictions)

            # single_prediction is 8 * BATCH_SIZE * NUM_CAT
            single_prediction = np.array(single_prediction)
            single_prediction = np.swapaxes(single_prediction, 0, 1)

            #single prediction is now BATCH_SIZE * 8 * NUM_CAT

            # _labels is BATCH_SIZE
            labels.extend(_labels)

            predictions.extend(single_prediction.tolist()) 
            # NUM_IMAGES * 8 * NUM_CAT
            print('Processing batch number: %d / %d' % (step, sample_size//BATCH_SIZE))

        # Save predictions in pickle file
        filename = checkpoint_file.split('/')
        if filename[-1] == '':
            prefix = filename[-2]
        else:
            prefix = filename[-1]
        prediction_file = PREDICTIONS_DIR + 'val_prediction__' + prefix
        label_file = PREDICTIONS_DIR + 'val_labels__' + prefix
        
        with open(prediction_file, 'wb') as f:
            pickle.dump(predictions, f)
        with open(label_file, 'wb') as f:
            pickle.dump(labels, f)

        print('Created new pickle file with predictions in %s' % prediction_file)
        
        coord.request_stop()
        coord.join(threads)

    return (prediction_file, label_file)
Example #3
0
def run_test(checkpoint_file, model_name):

    # Get test data
    test_data, test_labels, _ = get_inputs_crop_flip('test')
    print("Retrieved test data successfully")
    sample_size = get_size('test')

    # Initialize model
    keep_prob = 1.
    if model_name == 'AlexNet':
        model = AlexNetSmall(keep_prob)
    elif model_name == 'VGGNet':
        model = VGGNet(keep_prob)
    else:
        raise Exception('Not a valid model name')

    x = tf.placeholder(TYPE, shape=(BATCH_SIZE, IMAGE_FINAL_SIZE, IMAGE_FINAL_SIZE, NUM_CHANNELS), name='input')
    logits, variables = model.model(x)
    prediction = tf.nn.softmax(logits)

    batch_data = tf.train.batch(
        test_data,
        batch_size=BATCH_SIZE,
        capacity=5*BATCH_SIZE)

    if USE_GPU:
        config = tf.ConfigProto()
    else:
        config = tf.ConfigProto(device_count={'GPU': 0})
    saver = tf.train.Saver()

    with tf.Session(config=config) as sess:

        # Restore variables
        saver.restore(sess=sess, save_path=checkpoint_file)
        print("Restored variables from checkpoint %s" % checkpoint_file)

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        predictions = []

        for step in range(sample_size // BATCH_SIZE):
            _data = sess.run(batch_data)

            single_prediction = []
            for i in range(8):
                test_feed_dict = {x: _data[i]}
                test_predictions = sess.run(prediction, feed_dict=test_feed_dict)
                single_prediction.append(test_predictions)

            # single_prediction is 8 * BATCH_SIZE * NUM_CAT
            single_prediction = np.array(single_prediction)
            single_prediction = np.swapaxes(single_prediction, 0, 1)

            #single prediction is now BATCH_SIZE * 8 * NUM_CAT

            # average_prediction = np.prod(np.array(single_prediction), axis=0)

#            flat_prediction = np.array(single_prediction).flatten()
#            ind = np.argpartition(flat_prediction, -40)[-40:]
#            indices = ind[np.argsort(flat_prediction[ind])][::-1]
#            indices = np.unique(indices%100)[:5]
#            average_prediction = np.zeros(100)
#            for i in range(5):
#                average_prediction[indices[i]] = 6-i

            predictions.extend(single_prediction.tolist()) 
            # NUM_IMAGES * 8 * NUM_CAT
            print('Processing batch number: %d / %d' % (step, sample_size//BATCH_SIZE))

        # Save predictions in pickle file
        filename = checkpoint_file.split('/')
        if filename[-1] == '':
            prefix = filename[-2]
        else:
            prefix = filename[-1]
        prediction_file = PREDICTIONS_DIR + 'prediction__' + prefix
        with open(prediction_file, 'wb') as f:
            pickle.dump(predictions, f)
        print('Created new pickle file with predictions in %s' % prediction_file)
        
        coord.request_stop()
        coord.join(threads)

    return prediction_file
Example #4
0
                      (checkpoint_prefix + "-" + str(step)))
                saver.save(sess,
                           checkpoint_prefix,
                           global_step=step,
                           write_meta_graph=False)
                print("\tSuccess!\n")

        coord.request_stop()
        coord.join(threads)


if __name__ == '__main__':
    # optimizer = tf.train.AdamOptimizer(0.001)
    optimizer = tf.train.AdagradOptimizer(0.01)
    target_categories = []
    # target_categories = ['playground', 'abbey', 'amphitheater', 'baseball_field', 'bedroom', 'cemetery', 'courtyard', 'kitchen', 'mountain', 'shower']
    # target_categories = ALL_CATEGORIES[:10]

    keep_prob = tf.placeholder(
        tf.float32,
        name='keep_prob')  # we need to define a probability for the dropout

    ### Example when running BrianNet
    #run(target_categories, optimizer, {}, {}, model=BrianNet())

    # model = AlexNetSmall(keep_prob)
    model = VGGNet(keep_prob)
    run(target_categories,
        optimizer, {keep_prob: 1.}, {keep_prob: KEEP_PROB},
        model=model)
Example #5
0
device = args.gpu
n_epoch = 81

# 保存先をチェックする
if os.path.exists('models/' + args.dir):
    print('selected dir exists!')
else:
    print('selected dir does not exits! make dir.')
    os.mkdir('models/' + args.dir)

# 各種必要なパラメータを読み込み

# VGGmodelを読み込む
if args.usevgg == 1:
    print('loading VGG model...')
    vgg = VGGNet()
    serializers.load_hdf5('/tmp/VGG.model', vgg)
    print('loaded VGG!')


# ############学習の高速化のためにパラメータを事前に整理しておく###################
if args.usevgg == 1:
    print('preprocessing vgg data')
    vgg_img_param = []

    start = time.time()
    if os.path.isfile('features/vggparam_yahoo.pickle'):
        print('vgg checkpoint pickle is exist! loading pickle')
        with open('features/vggparam_yahoo.pickle', mode='rb') as f:
            vgg_img_param = pickle.load(f)
    else:
Example #6
0
        text, prob = classifier(img_name)
        print("------------------------------")
        print(f"Label: {text:<75}")
        print(f"Probability: {prob:.6f}.")
        print("------------------------------")
        if args.echo:
            self.echo(str(text), prob)

    def echo(self, text, prob):
        QMessageBox.information(
            self, "Message",
            f"Label :{str(text):<75}\nProbability: {prob:.6f}")


if __name__ == "__main__":
    model = VGGNet.from_pretrained(args.model_name)
    model.eval()
    if args.image_size is None:
        args.image_size = VGGNet.get_image_size(args.model_name)
    # Preprocess image
    tfms = transforms.Compose([
        transforms.Resize(args.image_size),
        transforms.CenterCrop(args.image_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ])

    # Load class names
    labels_map = json.load(open(args.labels_map))
    labels_map = [labels_map[str(i)] for i in range(args.num_classes)]
Example #7
0
# Open image
img = Image.open('panda.jpg')

# Preprocess image
tfms = transforms.Compose([
    transforms.Resize(image_size),
    transforms.CenterCrop(image_size),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
img = tfms(img).unsqueeze(0)

# Load class names
labels_map = json.load(open('labels_map.txt'))
labels_map = [labels_map[str(i)] for i in range(1000)]

# Classify with AlexNet
print("=> loading checkpoint 'vggnet-b11'.")
model = VGGNet.from_pretrained('vggnet-b11')
print("=> loaded checkpoint 'vggnet-b11'.")
model.eval()
with torch.no_grad():
    logits = model(img)
preds = torch.topk(logits, k=5).indices.squeeze(0).tolist()

print('-----')
for idx in preds:
    label = labels_map[idx]
    prob = torch.softmax(logits, dim=1)[0, idx].item()
    print('{:<75} ({:.2f}%)'.format(label, prob * 100))
Example #8
0
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

from vggnet import VGGNet

# Integer value represents output channel after performing the convolution layer
# 'M' represents the max pooling layer
# After convolution blocks; flatten the output and use 4096x4096x1000 Linear Layers
# with soft-max at the end
VGG_types = {
    'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'VGG13':
    [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'VGG16': [
        64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M',
        512, 512, 512, 'M'
    ],
    'VGG19': [
        64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512,
        512, 'M', 512, 512, 512, 512, 'M'
    ],
}

if __name__ == "__main__":
    # test VGGNet16
    model = VGGNet(name="VGGNet16",
                   architecture=VGG_types["VGG16"],
                   input_shape=(224, 224, 3),
                   classes=1000)
    model.summary()
Example #9
0
# import argparse
# from PIL import ImageFile
from chainer import cuda, serializers, Variable
from tinynet import wordQueryNet
from tinynet_novgg import wordQueryNetNoVGG
from wordparam import word2vector
from vggparam import vggparamater
from vggnet import VGGNet
import pickle
import argparse
import cv2 as cv
# import chainer
# import chainer.functions as F


vgg = VGGNet()
serializers.load_hdf5('/tmp/VGG.model', vgg)
mean = np.array([103.939, 116.779, 123.68])

img = cv.imread(image).astype(np.float32)
img -= mean
img = cv.resize(img, (224, 224)).transpose((2, 0, 1))
img = img[np.newaxis, :, :, :]

gpu = 0
if gpu >= 0:
    cuda.get_device(gpu).use()
    vgg.to_gpu()
    img = cuda.cupy.asarray(img, dtype=np.float32)

pred = vgg(Variable(img), None)
Example #10
0
def main_worker(gpu, ngpus_per_node, args):
    global best_acc1
    args.gpu = gpu

    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)
    # create model
    if 'vgg' in args.arch:  # NEW
        if args.pretrained:
            model = VGGNet.from_pretrained(args.arch,
                                           num_classes=args.num_classes)
            print("=> using pre-trained model '{}'".format(args.arch))
        else:
            print("=> creating model '{}'".format(args.arch))
            model = VGGNet.from_name(args.arch)

    else:
        if args.pretrained:
            print("=> using pre-trained model '{}'".format(args.arch))
            model = models.__dict__[args.arch](pretrained=True)
        else:
            print("=> creating model '{}'".format(args.arch))
            model = models.__dict__[args.arch]()

    if args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if args.gpu is not None:
            torch.cuda.set_device(args.gpu)
            model.cuda(args.gpu)
            # When using a single GPU per process and per
            # DistributedDataParallel, we need to divide the batch size
            # ourselves based on the total number of GPUs we have
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int(args.workers / ngpus_per_node)
            model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[args.gpu])
        else:
            model.cuda()
            # DistributedDataParallel will divide and allocate batch_size to all
            # available GPUs if device_ids are not set
            model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpu is not None:
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
    else:
        # DataParallel will divide and allocate batch_size to all available GPUs
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda(args.gpu)

    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      opt_level=args.opt_level)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            amp.load_state_dict(checkpoint['amp'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    # Data loading code
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    train_dataset = datasets.CIFAR10(root=args.data,
                                     train=True,
                                     download=True,
                                     transform=transforms.Compose([
                                         transforms.RandomHorizontalFlip(),
                                         transforms.ToTensor(),
                                         normalize,
                                     ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler)

    test_dataset = datasets.CIFAR10(root=args.data,
                                    train=False,
                                    download=True,
                                    transform=transforms.Compose([
                                        transforms.ToTensor(),
                                        normalize,
                                    ]))

    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=args.batch_size,
                                              shuffle=False,
                                              num_workers=args.workers,
                                              pin_memory=True)

    if args.evaluate:
        top1, top5 = validate(test_loader, model, criterion, args)
        with open("res.txt", "w") as f:
            print(f"Acc@1: {top1}\tAcc@5: {top5}", file=f)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        adjust_learning_rate(optimizer, epoch, args)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, args)

        # evaluate on validation set
        acc1, _ = validate(test_loader, model, criterion, args)

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (
                args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'best_acc1': best_acc1,
                    'optimizer': optimizer.state_dict(),
                    'amp': amp.state_dict(),
                }, is_best)
Example #11
0
def save_feats_batch_to_milvus(keyframe_path, table_name):
    client = milvus_util.milvus_client()
    feats, names, urls= feature_extract(database_path=keyframe_path, model=VGGNet())
    status, feats_ids = milvus_util.insert_vectors(client=client, table_name=table_name, vectors=feats)
    return status, feats_ids, names
Example #12
0
    256,
    256,
    'M',  # Layer 3
    512,
    512,
    512,
    512,
    'M',  # Layer 4
    512,
    512,
    512,
    512,
    'M',  # Layer 5
]

if __name__ == "__main__":
    opt = Adam(lr=0.001)

    # test VGGNet16
    model = VGGNet(name="VGGNet16",
                   architecture=VGG16,
                   input_shape=(224, 224, 3),
                   classes=1000)
    model.compile(optimizer=opt,
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    X_train = np.random.randn(1080, 224, 224, 3).astype('f')
    Y_train = np.random.randn(1080, 1000).astype('f')
    model.fit(X_train, Y_train, epochs=1, batch_size=32)