Example #1
0
    print('loaded VGG!')


# ############学習の高速化のためにパラメータを事前に整理しておく###################
if args.usevgg == 1:
    print('preprocessing vgg data')
    vgg_img_param = []

    start = time.time()
    if os.path.isfile('features/vggparam_yahoo.pickle'):
        print('vgg checkpoint pickle is exist! loading pickle')
        with open('features/vggparam_yahoo.pickle', mode='rb') as f:
            vgg_img_param = pickle.load(f)
    else:
        for filename in filenames:
            vgg_img_param.append(vggparamater(filename, args.gpu, vgg)[0])
        with open('features/vggparam_yahoo.pickle', mode='wb') as f:
            pickle.dump(vgg_img_param, f)
    calctime = time.time() - start
    print('VGG time: ' + str(calctime), '[sec]')
    print('vgg end')

#############################################################################
print('training start')
dataset = []

if os.path.isfile('style.npy'):
    print('the file is exists! load...')
    styleg = np.load('styleg.npy')
    style = np.load('style.npy')
else:
model = args.model
model_path = 'models/yahoo100m_gan/epoch_{}.model'.format(model)
vgg = VGGNet()
serializers.load_hdf5('/tmp/VGG.model', vgg)
if args.usevgg == 1:
    tinynet = Generator()
else:
    tinynet = Generator()
serializers.load_npz(model_path, tinynet)
tinynet.to_gpu()
words = ['outdoor', 'black', 'urban', 'white',
         'indoor', 'new', 'serene', 'red', 'light', 'tree', 'country', 'old', 'dark']
for word in words:
    for count in range(28):
        filename = 'images/valid/{}.jpg'.format(count)
        vgg_param = vggparamater(filename, 0, vgg)[0]
        if args.usevgg == 1:
            concatted = concatData(word, vgg_param)
        else:
            concatted = w2v(word)
        print('moto:')
        # print(concatted[0][400:420])
        # print(concatted[0][0:10])
        if args.usevgg == 0:
            concatted = np.reshape(concatted, (1, 200))
        print(concatted.shape)
        concatted_g = Variable(cuda.to_gpu(concatted))
        style_params = tinynet(concatted_g, train=False)
        # print(style_params.data.shape,concatted_g.data.shape)
        print('params:')
        print(style_params.data[0][0:10])