interval = float(sys.argv[2]) except: print 'usage', sys.argv[0], ' <url> <interval>' sys.exit() print 'url', url print 'interval', interval stamp_begin = -1.0 cf = Classifier('../models/deploy.prototxt', '../models/pretrained.caffemodel', '../models/mean.binaryproto', '../models/labels.txt') vc = VideoCap(url, (256, 256), "1/3") curr_encoding = locale.getdefaultlocale()[1] def cb_image(image): global cf, quit, stamp_begin if image is None: quit = True return if stamp_begin < 0.0: stamp_begin = time.time() pred = cf.predicate(image)
if __name__ == '__main__': url = sys.argv[1] cf = Classifier('../models/deploy.prototxt', '../models/pretrained.caffemodel', '../models/mean.binaryproto', '../models/labels.txt') quit = False def cb_image(img): global quit, cf if img is None: print 'end' quit = True else: pred = cf.predicate(img) f = cv2.resize(img, (480, 270)) cv2.imshow('show', f) key = cv2.waitKey(1) print pred[0][1].decode('utf-8').encode( 'gbk') + ' score:', pred[0][2] vc = VideoCap(url, (256, 256), "1/3") vc.start(cb_image) while not quit: time.sleep(1.0) # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
cf = Classifier('../models/deploy.prototxt', '../models/pretrained.caffemodel', '../models/mean.binaryproto', '../models/labels.txt') quit = False def cb_image(img): global quit, cf if img is None: print 'end' quit = True else: pred = cf.predicate(img) f = cv2.resize(img, (480, 270)) cv2.imshow('show', f) key = cv2.waitKey(1) print pred[0][1].decode('utf-8').encode('gbk') + ' score:', pred[0][2] vc = VideoCap(url, (256, 256), "1/3") vc.start(cb_image) while not quit: time.sleep(1.0) # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4