from models.PyCryptoBot import PyCryptoBot from models.Trading import TechnicalAnalysis from views.TradingGraphs import TradingGraphs app = PyCryptoBot() trading_data = app.getHistoricalData(app.getMarket(), app.getGranularity()) ta = TechnicalAnalysis(trading_data) ta.addAll() df_data = ta.getDataFrame() df_fib = ta.getFibonacciRetracementLevels() df_sr = ta.getSupportResistanceLevels() print(df_data) print(df_fib) print(df_sr) graphs = TradingGraphs(ta) #graphs.renderBuySellSignalEMA1226MACD(saveOnly=False) #graphs = TradingGraphs(ta) #graphs.renderPercentageChangeHistogram() #graphs.renderCumulativeReturn() #graphs.renderPercentageChangeScatterMatrix() graphs.renderFibonacciBollingerBands(period=24)
def executeJob(sc, market, granularity, tradingData=pd.DataFrame()): """Trading bot job which runs at a scheduled interval""" global action, buy_count, buy_sum, failsafe, iterations, last_action, last_buy, last_df_index, sell_count, sell_sum, x_since_buy, x_since_sell # increment iterations iterations = iterations + 1 if is_sim == 0: # retrieve the market data api = PublicAPI() tradingData = api.getHistoricalData(market, granularity) # analyse the market data tradingDataCopy = tradingData.copy() technicalAnalysis = TechnicalAnalysis(tradingDataCopy) technicalAnalysis.addAll() df = technicalAnalysis.getDataFrame() if len(df) != 300: # data frame should have 300 rows, if not retry print('error: data frame length is < 300 (' + str(len(df)) + ')') logging.error('error: data frame length is < 300 (' + str(len(df)) + ')') s.enter(300, 1, executeJob, (sc, market, granularity)) if is_sim == 1: # with a simulation df_last will iterate through data df_last = df.iloc[iterations - 1:iterations] else: # df_last contains the most recent entry df_last = df.tail(1) price = float(df_last['close'].values[0]) ema12gtema26 = bool(df_last['ema12gtema26'].values[0]) ema12gtema26co = bool(df_last['ema12gtema26co'].values[0]) macdgtsignal = bool(df_last['macdgtsignal'].values[0]) macdgtsignalco = bool(df_last['macdgtsignalco'].values[0]) ema12ltema26 = bool(df_last['ema12ltema26'].values[0]) ema12ltema26co = bool(df_last['ema12ltema26co'].values[0]) macdltsignal = bool(df_last['macdltsignal'].values[0]) macdltsignalco = bool(df_last['macdltsignalco'].values[0]) obv = float(df_last['obv'].values[0]) obv_pc = float(df_last['obv_pc'].values[0]) # candlestick detection hammer = bool(df_last['hammer'].values[0]) inverted_hammer = bool(df_last['inverted_hammer'].values[0]) hanging_man = bool(df_last['hanging_man'].values[0]) shooting_star = bool(df_last['shooting_star'].values[0]) three_white_soldiers = bool(df_last['three_white_soldiers'].values[0]) three_black_crows = bool(df_last['three_black_crows'].values[0]) morning_star = bool(df_last['morning_star'].values[0]) evening_star = bool(df_last['evening_star'].values[0]) three_line_strike = bool(df_last['three_line_strike'].values[0]) abandoned_baby = bool(df_last['abandoned_baby'].values[0]) morning_doji_star = bool(df_last['morning_doji_star'].values[0]) evening_doji_star = bool(df_last['evening_doji_star'].values[0]) two_black_gapping = bool(df_last['two_black_gapping'].values[0]) # criteria for a buy signal if ((ema12gtema26co == True and macdgtsignal == True and macdgtsignal > 0.1) or (ema12gtema26 == True and macdgtsignal == True and x_since_buy > 0 and x_since_buy <= 2)) and last_action != 'BUY': action = 'BUY' # criteria for a sell signal elif ((ema12ltema26co == True and macdltsignal == True) or (ema12ltema26 == True and macdltsignal == True and x_since_sell > 0 and x_since_sell <= 2)) and last_action not in ['', 'SELL']: action = 'SELL' failsafe = False # anything other than a buy or sell, just wait else: action = 'WAIT' # loss failsafe sell < -5% if last_buy > 0 and last_action == 'BUY': change_pcnt = ((price / last_buy) - 1) * 100 if (change_pcnt < -5): action = 'SELL' x_since_buy = 0 failsafe = True log_text = '! Loss Failsafe Triggered (< -5%)' print(log_text, "\n") logging.warning(log_text) # polling is every 5 minutes (even for hourly intervals), but only process once per interval if (last_df_index != df_last.index.format()): ts_text = str(df_last.index.format()[0]) precision = 2 if cryptoMarket == 'XLM': precision = 4 price_text = 'Price: ' + str( truncate(float(df_last['close'].values[0]), precision)) ema_text = compare(df_last['ema12'].values[0], df_last['ema26'].values[0], 'EMA12/26', precision) macd_text = compare(df_last['macd'].values[0], df_last['signal'].values[0], 'MACD', precision) obv_text = compare(df_last['obv_pc'].values[0], 0.1, 'OBV %', precision) counter_text = '[I:' + str(iterations) + ',B:' + str( x_since_buy) + ',S:' + str(x_since_sell) + ']' if hammer == True: log_text = '* Candlestick Detected: Hammer ("Weak - Reversal - Bullish Signal - Up")' print(log_text, "\n") logging.debug(log_text) if shooting_star == True: log_text = '* Candlestick Detected: Shooting Star ("Weak - Reversal - Bearish Pattern - Down")' print(log_text, "\n") logging.debug(log_text) if hanging_man == True: log_text = '* Candlestick Detected: Hanging Man ("Weak - Continuation - Bearish Pattern - Down")' print(log_text, "\n") logging.debug(log_text) if inverted_hammer == True: log_text = '* Candlestick Detected: Inverted Hammer ("Weak - Continuation - Bullish Pattern - Up")' print(log_text, "\n") logging.debug(log_text) if three_white_soldiers == True: log_text = '*** Candlestick Detected: Three White Soldiers ("Strong - Reversal - Bullish Pattern - Up")' print(log_text, "\n") logging.debug(log_text) if three_black_crows == True: log_text = '* Candlestick Detected: Three Black Crows ("Strong - Reversal - Bearish Pattern - Down")' print(log_text, "\n") logging.debug(log_text) if morning_star == True: log_text = '*** Candlestick Detected: Morning Star ("Strong - Reversal - Bullish Pattern - Up")' print(log_text, "\n") logging.debug(log_text) if evening_star == True: log_text = '*** Candlestick Detected: Evening Star ("Strong - Reversal - Bearish Pattern - Down")' print(log_text, "\n") logging.debug(log_text) if three_line_strike == True: log_text = '** Candlestick Detected: Three Line Strike ("Reliable - Reversal - Bullish Pattern - Up")' print(log_text, "\n") logging.debug(log_text) if abandoned_baby == True: log_text = '** Candlestick Detected: Abandoned Baby ("Reliable - Reversal - Bullish Pattern - Up")' print(log_text, "\n") logging.debug(log_text) if morning_doji_star == True: log_text = '** Candlestick Detected: Morning Doji Star ("Reliable - Reversal - Bullish Pattern - Up")' print(log_text, "\n") logging.debug(log_text) if evening_doji_star == True: log_text = '** Candlestick Detected: Evening Doji Star ("Reliable - Reversal - Bearish Pattern - Down")' print(log_text, "\n") logging.debug(log_text) if two_black_gapping == True: log_text = '*** Candlestick Detected: Two Black Gapping ("Reliable - Reversal - Bearish Pattern - Down")' print(log_text, "\n") logging.debug(log_text) ema_co_prefix = '' ema_co_suffix = '' if ema12gtema26co == True: ema_co_prefix = '*^ ' ema_co_suffix = ' ^*' elif ema12ltema26co == True: ema_co_prefix = '*v ' ema_co_suffix = ' v*' elif ema12gtema26 == True: ema_co_prefix = '^ ' ema_co_suffix = ' ^' elif ema12ltema26 == True: ema_co_prefix = 'v ' ema_co_suffix = ' v' macd_co_prefix = '' macd_co_suffix = '' if macdgtsignalco == True: macd_co_prefix = '*^ ' macd_co_suffix = ' ^*' elif macdltsignalco == True: macd_co_prefix = '*v ' macd_co_suffix = ' v*' elif macdgtsignal == True: macd_co_prefix = '^ ' macd_co_suffix = ' ^' elif macdltsignal == True: macd_co_prefix = 'v ' macd_co_suffix = ' v' obv_prefix = '' obv_suffix = '' if (obv_pc > 0.1): obv_prefix = '^ ' obv_suffix = ' ^' else: obv_prefix = 'v ' obv_suffix = ' v' if is_verbose == 0: if last_action != '': output_text = ts_text + ' | ' + price_text + ' | ' + ema_co_prefix + ema_text + ema_co_suffix + ' | ' + macd_co_prefix + macd_text + macd_co_suffix + ' | ' + obv_prefix + obv_text + obv_suffix + ' | ' + action + ' ' + counter_text + ' | Last Action: ' + last_action else: output_text = ts_text + ' | ' + price_text + ' | ' + ema_co_prefix + ema_text + ema_co_suffix + ' | ' + macd_co_prefix + macd_text + macd_co_suffix + ' | ' + obv_prefix + obv_text + obv_suffix + ' | ' + action + ' ' + counter_text if last_action == 'BUY': # calculate last buy minus fees fee = last_buy * 0.005 last_buy_minus_fees = last_buy + fee margin = str( truncate((((price - last_buy_minus_fees) / price) * 100), 2)) + '%' output_text += ' | ' + margin logging.debug(output_text) print(output_text) else: logging.debug('-- Iteration: ' + str(iterations) + ' --') logging.debug('-- Since Last Buy: ' + str(x_since_buy) + ' --') logging.debug('-- Since Last Sell: ' + str(x_since_sell) + ' --') if last_action == 'BUY': margin = str(truncate( (((price - last_buy) / price) * 100), 2)) + '%' logging.debug('-- Margin: ' + margin + '% --') logging.debug('price: ' + str(truncate(float(df_last['close'].values[0]), 2))) logging.debug('ema12: ' + str(truncate(float(df_last['ema12'].values[0]), 2))) logging.debug('ema26: ' + str(truncate(float(df_last['ema26'].values[0]), 2))) logging.debug('ema12gtema26co: ' + str(ema12gtema26co)) logging.debug('ema12gtema26: ' + str(ema12gtema26)) logging.debug('ema12ltema26co: ' + str(ema12ltema26co)) logging.debug('ema12ltema26: ' + str(ema12ltema26)) logging.debug('macd: ' + str(truncate(float(df_last['macd'].values[0]), 2))) logging.debug('signal: ' + str(truncate(float(df_last['signal'].values[0]), 2))) logging.debug('macdgtsignal: ' + str(macdgtsignal)) logging.debug('macdltsignal: ' + str(macdltsignal)) logging.debug('obv: ' + str(obv)) logging.debug('obv_pc: ' + str(obv_pc) + '%') logging.debug('action: ' + action) # informational output on the most recent entry print('') print( '================================================================================' ) txt = ' Iteration : ' + str(iterations) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Since Last Buy : ' + str(x_since_buy) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Since Last Sell : ' + str(x_since_sell) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Timestamp : ' + str(df_last.index.format()[0]) print('|', txt, (' ' * (75 - len(txt))), '|') print( '--------------------------------------------------------------------------------' ) txt = ' EMA12 : ' + str( truncate(float(df_last['ema12'].values[0]), 2)) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' EMA26 : ' + str( truncate(float(df_last['ema26'].values[0]), 2)) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Crossing Above : ' + str(ema12gtema26co) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Currently Above : ' + str(ema12gtema26) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Crossing Below : ' + str(ema12ltema26co) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Currently Below : ' + str(ema12ltema26) print('|', txt, (' ' * (75 - len(txt))), '|') if (ema12gtema26 == True and ema12gtema26co == True): txt = ' Condition : EMA12 is currently crossing above EMA26' elif (ema12gtema26 == True and ema12gtema26co == False): txt = ' Condition : EMA12 is currently above EMA26 and has crossed over' elif (ema12ltema26 == True and ema12ltema26co == True): txt = ' Condition : EMA12 is currently crossing below EMA26' elif (ema12ltema26 == True and ema12ltema26co == False): txt = ' Condition : EMA12 is currently below EMA26 and has crossed over' else: txt = ' Condition : -' print('|', txt, (' ' * (75 - len(txt))), '|') print( '--------------------------------------------------------------------------------' ) txt = ' MACD : ' + str( truncate(float(df_last['macd'].values[0]), 2)) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Signal : ' + str( truncate(float(df_last['signal'].values[0]), 2)) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Currently Above : ' + str(macdgtsignal) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Currently Below : ' + str(macdltsignal) print('|', txt, (' ' * (75 - len(txt))), '|') if (macdgtsignal == True and macdgtsignalco == True): txt = ' Condition : MACD is currently crossing above Signal' elif (macdgtsignal == True and macdgtsignalco == False): txt = ' Condition : MACD is currently above Signal and has crossed over' elif (macdltsignal == True and macdltsignalco == True): txt = ' Condition : MACD is currently crossing below Signal' elif (macdltsignal == True and macdltsignalco == False): txt = ' Condition : MACD is currently below Signal and has crossed over' else: txt = ' Condition : -' print('|', txt, (' ' * (75 - len(txt))), '|') print( '--------------------------------------------------------------------------------' ) txt = ' OBV : ' + str(truncate(obv, 4)) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' OBV Change : ' + str(obv_pc) + '%' print('|', txt, (' ' * (75 - len(txt))), '|') if (obv_pc >= 2): txt = ' Condition : Large positive volume changes' elif (obv_pc < 2 and obv_pc >= 0): txt = ' Condition : Positive volume changes' else: txt = ' Condition : Negative volume changes' print('|', txt, (' ' * (75 - len(txt))), '|') print( '--------------------------------------------------------------------------------' ) txt = ' Action : ' + action print('|', txt, (' ' * (75 - len(txt))), '|') print( '================================================================================' ) if last_action == 'BUY': txt = ' Margin : ' + margin + '%' print('|', txt, (' ' * (75 - len(txt))), '|') print( '================================================================================' ) # increment x since buy if (ema12gtema26 == True and failsafe == False): x_since_buy = x_since_buy + 1 # increment x since sell elif (ema12ltema26 == True): x_since_sell = x_since_sell + 1 # if a buy signal if action == 'BUY': buy_count = buy_count + 1 # reset x since sell x_since_sell = 0 last_buy = price # if live if is_live == 1: if is_verbose == 0: logging.info(ts_text + ' | ' + market + ' ' + str(granularity) + ' | ' + price_text + ' | BUY') print("\n", ts_text, '|', market, granularity, '|', price_text, '| BUY', "\n") else: print( '--------------------------------------------------------------------------------' ) print( '| *** Executing LIVE Buy Order *** |' ) print( '--------------------------------------------------------------------------------' ) # connect to coinbase pro api (authenticated) model = AuthAPI(config['api_key'], config['api_secret'], config['api_pass'], config['api_url']) # execute a live market buy resp = model.marketBuy(market, float(account.getBalance(fiatMarket))) logging.info(resp) #logging.info('attempt to buy ' + resp['specified_funds'] + ' (' + resp['funds'] + ' after fees) of ' + resp['product_id']) # if not live else: if is_verbose == 0: logging.info(ts_text + ' | ' + market + ' ' + str(granularity) + ' | ' + price_text + ' | BUY') print("\n", ts_text, '|', market, granularity, '|', price_text, '| BUY', "\n") else: print( '--------------------------------------------------------------------------------' ) print( '| *** Executing TEST Buy Order *** |' ) print( '--------------------------------------------------------------------------------' ) #print(df_last[['close','ema12','ema26','ema12gtema26','ema12gtema26co','macd','signal','macdgtsignal','obv','obv_pc']]) if save_graphs == 1: tradinggraphs = TradingGraphs(technicalAnalysis) ts = datetime.now().timestamp() filename = 'BTC-GBP_3600_buy_' + str(ts) + '.png' tradinggraphs.renderEMAandMACD(24, 'graphs/' + filename, True) # if a sell signal elif action == 'SELL': sell_count = sell_count + 1 # reset x since buy x_since_buy = 0 # if live if is_live == 1: if is_verbose == 0: logging.info(ts_text + ' | ' + market + ' ' + str(granularity) + ' | ' + price_text + ' | SELL') print("\n", ts_text, '|', market, granularity, '|', price_text, '| SELL', "\n") else: print( '--------------------------------------------------------------------------------' ) print( '| *** Executing LIVE Sell Order *** |' ) print( '--------------------------------------------------------------------------------' ) # connect to Coinbase Pro API live model = AuthAPI(config['api_key'], config['api_secret'], config['api_pass'], config['api_url']) # execute a live market sell resp = model.marketSell( market, float(account.getBalance(cryptoMarket))) logging.info(resp) #logging.info('attempt to sell ' + resp['size'] + ' of ' + resp['product_id']) # if not live else: if is_verbose == 0: sell_price = float( str( truncate(float(df_last['close'].values[0]), precision))) last_buy_price = float( str(truncate(float(last_buy), precision))) buy_sell_diff = round( np.subtract(sell_price, last_buy_price), precision) buy_sell_margin_no_fees = str( truncate( (((sell_price - last_buy_price) / sell_price) * 100), 2)) + '%' # calculate last buy minus fees buy_fee = last_buy_price * 0.005 last_buy_price_minus_fees = last_buy_price + buy_fee buy_sell_margin_fees = str( truncate((((sell_price - last_buy_price_minus_fees) / sell_price) * 100), 2)) + '%' logging.info(ts_text + ' | ' + market + ' ' + str(granularity) + ' | SELL | ' + str(sell_price) + ' | BUY | ' + str(last_buy_price) + ' | DIFF | ' + str(buy_sell_diff) + ' | MARGIN NO FEES | ' + str(buy_sell_margin_no_fees) + ' | MARGIN FEES | ' + str(buy_sell_margin_fees)) print("\n", ts_text, '|', market, granularity, '| SELL |', str(sell_price), '| BUY |', str(last_buy_price), '| DIFF |', str(buy_sell_diff), '| MARGIN NO FEES |', str(buy_sell_margin_no_fees), '| MARGIN FEES |', str(buy_sell_margin_fees), "\n") buy_sum = buy_sum + last_buy_price_minus_fees sell_sum = sell_sum + sell_price else: print( '--------------------------------------------------------------------------------' ) print( '| *** Executing TEST Sell Order *** |' ) print( '--------------------------------------------------------------------------------' ) #print(df_last[['close','ema12','ema26','ema12ltema26','ema12ltema26co','macd','signal','macdltsignal','obv','obv_pc']]) if save_graphs == 1: tradinggraphs = TradingGraphs(technicalAnalysis) ts = datetime.now().timestamp() filename = 'BTC-GBP_3600_buy_' + str(ts) + '.png' tradinggraphs.renderEMAandMACD(24, 'graphs/' + filename, True) # last significant action if action in ['BUY', 'SELL']: last_action = action last_df_index = df_last.index.format() if iterations == 300: print("\nSimulation Summary\n") if buy_count > sell_count: # calculate last buy minus fees fee = last_buy * 0.005 last_buy_minus_fees = last_buy + fee buy_sum = buy_sum + (float( truncate(float(df_last['close'].values[0]), precision)) - last_buy_minus_fees) print(' Buy Count :', buy_count) print(' Sell Count :', sell_count, "\n") print(' Buy Total :', buy_sum) print(' Sell Total :', sell_sum) print( ' Margin :', str(truncate( (((sell_sum - buy_sum) / sell_sum) * 100), 2)) + '%', "\n") else: # decrement ignored iteration iterations = iterations - 1 # if live if is_live == 1: # save csv with orders for market that are 'done' orders = account.getOrders(market, '', 'done') orders.to_csv('orders.csv', index=False) if is_sim == 1: if iterations < 300: if sim_speed == 'fast': # fast processing executeJob(sc, market, granularity, tradingData) else: # slow processing s.enter(1, 1, executeJob, (sc, market, granularity, tradingData)) else: # poll every 5 minutes s.enter(300, 1, executeJob, (sc, market, granularity))
from models.PyCryptoBot import PyCryptoBot from models.Trading import TechnicalAnalysis from models.Binance import AuthAPI as BAuthAPI, PublicAPI as BPublicAPI from models.CoinbasePro import AuthAPI as CBAuthAPI, PublicAPI as CBPublicAPI from views.TradingGraphs import TradingGraphs #app = PyCryptoBot() app = PyCryptoBot('binance') tradingData = app.getHistoricalData(app.getMarket(), app.getGranularity()) technicalAnalysis = TechnicalAnalysis(tradingData) technicalAnalysis.addAll() tradinggraphs = TradingGraphs(technicalAnalysis) tradinggraphs.renderFibonacciRetracement(True) tradinggraphs.renderSupportResistance(True) tradinggraphs.renderCandlesticks(30, True) tradinggraphs.renderSeasonalARIMAModelPrediction(1, True)
# if the last transation was a buy retrieve open amount addBalance = 0 df_orders = account.getOrders() if len(df_orders) > 0 and df_orders.iloc[[-1]]['action'].values[0] == 'buy': # last trade is still open, add to closing balance addBalance = df_orders.iloc[[-1]]['value'].values[0] # displays the transactions from the simulation print('') print(df_orders) def truncate(f, n): return math.floor(f * 10**n) / 10**n # if the last transaction was a buy add the open amount to the closing balance result = truncate( round((account.getBalance(cryptoMarket) + addBalance) - openingBalance, 2), 2) print('') print("Opening balance:", truncate(openingBalance, 2)) print("Closing balance:", truncate(round(account.getBalance(cryptoMarket) + addBalance, 2), 2)) print(" Result:", result) print('') # renders the DataFrame for analysis tradinggraphs = TradingGraphs(coinbasepro) tradinggraphs.renderBuySellSignalEMA1226MACD()
import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker from models.Trading import TechnicalAnalysis from models.CoinbasePro import PublicAPI from views.TradingGraphs import TradingGraphs market = 'BTC-GBP' granularity = 3600 api = PublicAPI() tradingData = api.getHistoricalData(market, granularity) technicalAnalysis = TechnicalAnalysis(tradingData) technicalAnalysis.addEMA(12) technicalAnalysis.addEMA(26) technicalAnalysis.addCandleHammer() technicalAnalysis.addCandleInvertedHammer() technicalAnalysis.addCandleShootingStar() technicalAnalysis.addCandleHangingMan() technicalAnalysis.addCandleThreeWhiteSoldiers() technicalAnalysis.addCandleThreeBlackCrows() technicalAnalysis.addCandleDoji() technicalAnalysis.addCandleThreeLineStrike() technicalAnalysis.addCandleTwoBlackGapping() technicalAnalysis.addCandleEveningStar() technicalAnalysis.addCandleAbandonedBaby() df = technicalAnalysis.getDataFrame() tradinggraphs = TradingGraphs(technicalAnalysis) tradinggraphs.renderEMA12EMA26CloseCandles() #tradinggraphs.renderEMA12EMA26CloseCandles(30, 'candles.png')
def executeJob(sc=None, app: PyCryptoBot = None, state: AppState = None, trading_data=pd.DataFrame()): """Trading bot job which runs at a scheduled interval""" global technical_analysis # connectivity check (only when running live) if app.isLive() and app.getTime() is None: Logger.warning( 'Your connection to the exchange has gone down, will retry in 1 minute!' ) # poll every 5 minute list(map(s.cancel, s.queue)) s.enter(300, 1, executeJob, (sc, app, state)) return # increment state.iterations state.iterations = state.iterations + 1 if not app.isSimulation(): # retrieve the app.getMarket() data trading_data = app.getHistoricalData(app.getMarket(), app.getGranularity()) else: if len(trading_data) == 0: return None # analyse the market data if app.isSimulation() and len(trading_data.columns) > 8: df = trading_data # if smartswitch the get the market data using new granularity if app.sim_smartswitch: df_last = app.getInterval(df, state.iterations) if len(df_last.index.format()) > 0: current_df_index = str(df_last.index.format()[0]) current_sim_date = f'{current_df_index} 00:00:00' if len( current_df_index) == 10 else current_df_index dt = current_sim_date.split(' ') date = dt[0].split('-') time = dt[1].split(':') startDate = datetime(int(date[0]), int(date[1]), int(date[2]), int(time[0]), int(time[1]), int(time[2])) trading_data = app.getHistoricalData( app.getMarket(), app.getGranularity(), startDate.isoformat(timespec='milliseconds'), datetime.now().isoformat(timespec='milliseconds')) trading_dataCopy = trading_data.copy() technical_analysis = TechnicalAnalysis(trading_dataCopy) technical_analysis.addAll() df = technical_analysis.getDataFrame() state.iterations = 1 app.sim_smartswitch = False else: trading_dataCopy = trading_data.copy() technical_analysis = TechnicalAnalysis(trading_dataCopy) technical_analysis.addAll() df = technical_analysis.getDataFrame() if app.isSimulation(): df_last = app.getInterval(df, state.iterations) else: df_last = app.getInterval(df) if len(df_last.index.format()) > 0: current_df_index = str(df_last.index.format()[0]) else: current_df_index = state.last_df_index formatted_current_df_index = f'{current_df_index} 00:00:00' if len( current_df_index) == 10 else current_df_index current_sim_date = formatted_current_df_index # use actual sim mode date to check smartchswitch if app.getSmartSwitch() == 1 and app.getGranularity( ) == 3600 and app.is1hEMA1226Bull( current_sim_date) is True and app.is6hEMA1226Bull( current_sim_date) is True: Logger.info( '*** smart switch from granularity 3600 (1 hour) to 900 (15 min) ***' ) if app.isSimulation(): app.sim_smartswitch = True app.notifyTelegram( app.getMarket() + " smart switch from granularity 3600 (1 hour) to 900 (15 min)") app.setGranularity(900) list(map(s.cancel, s.queue)) s.enter(5, 1, executeJob, (sc, app, state)) # use actual sim mode date to check smartchswitch if app.getSmartSwitch() == 1 and app.getGranularity( ) == 900 and app.is1hEMA1226Bull( current_sim_date) is False and app.is6hEMA1226Bull( current_sim_date) is False: Logger.info( "*** smart switch from granularity 900 (15 min) to 3600 (1 hour) ***" ) if app.isSimulation(): app.sim_smartswitch = True app.notifyTelegram( app.getMarket() + " smart switch from granularity 900 (15 min) to 3600 (1 hour)") app.setGranularity(3600) list(map(s.cancel, s.queue)) s.enter(5, 1, executeJob, (sc, app, state)) if app.getExchange() == 'binance' and app.getGranularity() == 86400: if len(df) < 250: # data frame should have 250 rows, if not retry Logger.error('error: data frame length is < 250 (' + str(len(df)) + ')') list(map(s.cancel, s.queue)) s.enter(300, 1, executeJob, (sc, app, state)) else: if len(df) < 300: if not app.isSimulation(): # data frame should have 300 rows, if not retry Logger.error('error: data frame length is < 300 (' + str(len(df)) + ')') list(map(s.cancel, s.queue)) s.enter(300, 1, executeJob, (sc, app, state)) if len(df_last) > 0: now = datetime.today().strftime('%Y-%m-%d %H:%M:%S') # last_action polling if live if app.isLive(): last_action_current = state.last_action state.pollLastAction() if last_action_current != state.last_action: Logger.info( f'last_action change detected from {last_action_current} to {state.last_action}' ) app.notifyTelegram( f"{app.getMarket} last_action change detected from {last_action_current} to {state.last_action}" ) if not app.isSimulation(): ticker = app.getTicker(app.getMarket()) now = ticker[0] price = ticker[1] if price < df_last['low'].values[0] or price == 0: price = float(df_last['close'].values[0]) else: price = float(df_last['close'].values[0]) if price < 0.0001: raise Exception( app.getMarket() + ' is unsuitable for trading, quote price is less than 0.0001!') # technical indicators ema12gtema26 = bool(df_last['ema12gtema26'].values[0]) ema12gtema26co = bool(df_last['ema12gtema26co'].values[0]) goldencross = bool(df_last['goldencross'].values[0]) macdgtsignal = bool(df_last['macdgtsignal'].values[0]) macdgtsignalco = bool(df_last['macdgtsignalco'].values[0]) ema12ltema26 = bool(df_last['ema12ltema26'].values[0]) ema12ltema26co = bool(df_last['ema12ltema26co'].values[0]) macdltsignal = bool(df_last['macdltsignal'].values[0]) macdltsignalco = bool(df_last['macdltsignalco'].values[0]) obv = float(df_last['obv'].values[0]) obv_pc = float(df_last['obv_pc'].values[0]) elder_ray_buy = bool(df_last['eri_buy'].values[0]) elder_ray_sell = bool(df_last['eri_sell'].values[0]) # if simulation, set goldencross based on actual sim date if app.isSimulation(): goldencross = app.is1hSMA50200Bull(current_sim_date) # if simulation interations < 200 set goldencross to true #if app.isSimulation() and state.iterations < 200: # goldencross = True # candlestick detection hammer = bool(df_last['hammer'].values[0]) inverted_hammer = bool(df_last['inverted_hammer'].values[0]) hanging_man = bool(df_last['hanging_man'].values[0]) shooting_star = bool(df_last['shooting_star'].values[0]) three_white_soldiers = bool(df_last['three_white_soldiers'].values[0]) three_black_crows = bool(df_last['three_black_crows'].values[0]) morning_star = bool(df_last['morning_star'].values[0]) evening_star = bool(df_last['evening_star'].values[0]) three_line_strike = bool(df_last['three_line_strike'].values[0]) abandoned_baby = bool(df_last['abandoned_baby'].values[0]) morning_doji_star = bool(df_last['morning_doji_star'].values[0]) evening_doji_star = bool(df_last['evening_doji_star'].values[0]) two_black_gapping = bool(df_last['two_black_gapping'].values[0]) strategy = Strategy(app, state, df, state.iterations) state.action = strategy.getAction() immediate_action = False margin, profit, sell_fee = 0, 0, 0 if state.last_buy_size > 0 and state.last_buy_price > 0 and price > 0 and state.last_action == 'BUY': # update last buy high if price > state.last_buy_high: state.last_buy_high = price if state.last_buy_high > 0: change_pcnt_high = ((price / state.last_buy_high) - 1) * 100 else: change_pcnt_high = 0 # buy and sell calculations state.last_buy_fee = round(state.last_buy_size * app.getTakerFee(), 8) state.last_buy_filled = round( ((state.last_buy_size - state.last_buy_fee) / state.last_buy_price), 8) # if not a simulation, sync with exchange orders if not app.isSimulation(): exchange_last_buy = app.getLastBuy() if exchange_last_buy is not None: if state.last_buy_size != exchange_last_buy['size']: state.last_buy_size = exchange_last_buy['size'] if state.last_buy_filled != exchange_last_buy['filled']: state.last_buy_filled = exchange_last_buy['filled'] if state.last_buy_price != exchange_last_buy['price']: state.last_buy_price = exchange_last_buy['price'] if app.getExchange() == 'coinbasepro': if state.last_buy_fee != exchange_last_buy['fee']: state.last_buy_fee = exchange_last_buy['fee'] margin, profit, sell_fee = calculate_margin( buy_size=state.last_buy_size, buy_filled=state.last_buy_filled, buy_price=state.last_buy_price, buy_fee=state.last_buy_fee, sell_percent=app.getSellPercent(), sell_price=price, sell_taker_fee=app.getTakerFee()) # handle immedate sell actions if strategy.isSellTrigger(price, technical_analysis.getTradeExit(price), margin, change_pcnt_high, obv_pc, macdltsignal): state.action = 'SELL' state.last_action = 'BUY' immediate_action = True # handle overriding wait actions (do not sell if sell at loss disabled!) if strategy.isWaitTrigger(margin): state.action = 'WAIT' state.last_action = 'BUY' immediate_action = False bullbeartext = '' if app.disableBullOnly() is True or (df_last['sma50'].values[0] == df_last['sma200'].values[0]): bullbeartext = '' elif goldencross is True: bullbeartext = ' (BULL)' elif goldencross is False: bullbeartext = ' (BEAR)' # polling is every 5 minutes (even for hourly intervals), but only process once per interval if (immediate_action is True or state.last_df_index != current_df_index): precision = 4 if (price < 0.01): precision = 8 # Since precision does not change after this point, it is safe to prepare a tailored `truncate()` that would # work with this precision. It should save a couple of `precision` uses, one for each `truncate()` call. truncate = functools.partial(_truncate, n=precision) price_text = 'Close: ' + truncate(price) ema_text = '' if app.disableBuyEMA() is False: ema_text = app.compare(df_last['ema12'].values[0], df_last['ema26'].values[0], 'EMA12/26', precision) macd_text = '' if app.disableBuyMACD() is False: macd_text = app.compare(df_last['macd'].values[0], df_last['signal'].values[0], 'MACD', precision) obv_text = '' if app.disableBuyOBV() is False: obv_text = 'OBV: ' + truncate( df_last['obv'].values[0]) + ' (' + str( truncate(df_last['obv_pc'].values[0])) + '%)' state.eri_text = '' if app.disableBuyElderRay() is False: if elder_ray_buy is True: state.eri_text = 'ERI: buy | ' elif elder_ray_sell is True: state.eri_text = 'ERI: sell | ' else: state.eri_text = 'ERI: | ' if hammer is True: log_text = '* Candlestick Detected: Hammer ("Weak - Reversal - Bullish Signal - Up")' Logger.info(log_text) if shooting_star is True: log_text = '* Candlestick Detected: Shooting Star ("Weak - Reversal - Bearish Pattern - Down")' Logger.info(log_text) if hanging_man is True: log_text = '* Candlestick Detected: Hanging Man ("Weak - Continuation - Bearish Pattern - Down")' Logger.info(log_text) if inverted_hammer is True: log_text = '* Candlestick Detected: Inverted Hammer ("Weak - Continuation - Bullish Pattern - Up")' Logger.info(log_text) if three_white_soldiers is True: log_text = '*** Candlestick Detected: Three White Soldiers ("Strong - Reversal - Bullish Pattern - Up")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if three_black_crows is True: log_text = '* Candlestick Detected: Three Black Crows ("Strong - Reversal - Bearish Pattern - Down")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if morning_star is True: log_text = '*** Candlestick Detected: Morning Star ("Strong - Reversal - Bullish Pattern - Up")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if evening_star is True: log_text = '*** Candlestick Detected: Evening Star ("Strong - Reversal - Bearish Pattern - Down")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if three_line_strike is True: log_text = '** Candlestick Detected: Three Line Strike ("Reliable - Reversal - Bullish Pattern - Up")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if abandoned_baby is True: log_text = '** Candlestick Detected: Abandoned Baby ("Reliable - Reversal - Bullish Pattern - Up")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if morning_doji_star is True: log_text = '** Candlestick Detected: Morning Doji Star ("Reliable - Reversal - Bullish Pattern - Up")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if evening_doji_star is True: log_text = '** Candlestick Detected: Evening Doji Star ("Reliable - Reversal - Bearish Pattern - Down")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) if two_black_gapping is True: log_text = '*** Candlestick Detected: Two Black Gapping ("Reliable - Reversal - Bearish Pattern - Down")' Logger.info(log_text) app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') ' + log_text) ema_co_prefix = '' ema_co_suffix = '' if app.disableBuyEMA() is False: if ema12gtema26co is True: ema_co_prefix = '*^ ' ema_co_suffix = ' ^*' elif ema12ltema26co is True: ema_co_prefix = '*v ' ema_co_suffix = ' v*' elif ema12gtema26 is True: ema_co_prefix = '^ ' ema_co_suffix = ' ^' elif ema12ltema26 is True: ema_co_prefix = 'v ' ema_co_suffix = ' v' macd_co_prefix = '' macd_co_suffix = '' if app.disableBuyMACD() is False: if macdgtsignalco is True: macd_co_prefix = '*^ ' macd_co_suffix = ' ^*' elif macdltsignalco is True: macd_co_prefix = '*v ' macd_co_suffix = ' v*' elif macdgtsignal is True: macd_co_prefix = '^ ' macd_co_suffix = ' ^' elif macdltsignal is True: macd_co_prefix = 'v ' macd_co_suffix = ' v' obv_prefix = '' obv_suffix = '' if app.disableBuyOBV() is False: if float(obv_pc) > 0: obv_prefix = '^ ' obv_suffix = ' ^ | ' elif float(obv_pc) < 0: obv_prefix = 'v ' obv_suffix = ' v | ' if not app.isVerbose(): if state.last_action != '': output_text = formatted_current_df_index + ' | ' + app.getMarket() + bullbeartext + ' | ' + \ app.printGranularity() + ' | ' + price_text + ' | ' + ema_co_prefix + \ ema_text + ema_co_suffix + ' | ' + macd_co_prefix + macd_text + macd_co_suffix + \ obv_prefix + obv_text + obv_suffix + state.eri_text + ' | ' + state.action + \ ' | Last Action: ' + state.last_action else: output_text = formatted_current_df_index + ' | ' + app.getMarket() + bullbeartext + ' | ' + \ app.printGranularity() + ' | ' + price_text + ' | ' + ema_co_prefix + \ ema_text + ema_co_suffix + ' | ' + macd_co_prefix + macd_text + macd_co_suffix + \ obv_prefix + obv_text + obv_suffix + state.eri_text + ' | ' + state.action + ' ' if state.last_action == 'BUY': if state.last_buy_size > 0: margin_text = truncate(margin) + '%' else: margin_text = '0%' output_text += ' | ' + margin_text + ' (delta: ' + str( round(price - state.last_buy_price, precision)) + ')' Logger.info(output_text) # Seasonal Autoregressive Integrated Moving Average (ARIMA) model (ML prediction for 3 intervals from now) if not app.isSimulation(): try: prediction = technical_analysis.seasonalARIMAModelPrediction( int(app.getGranularity() / 60) * 3) # 3 intervals from now Logger.info( f'Seasonal ARIMA model predicts the closing price will be {str(round(prediction[1], 2))} at {prediction[0]} (delta: {round(prediction[1] - price, 2)})' ) except: pass if state.last_action == 'BUY': # display support, resistance and fibonacci levels Logger.info( technical_analysis. printSupportResistanceFibonacciLevels(price)) else: Logger.debug('-- Iteration: ' + str(state.iterations) + ' --' + bullbeartext) if state.last_action == 'BUY': if state.last_buy_size > 0: margin_text = truncate(margin) + '%' else: margin_text = '0%' Logger.debug('-- Margin: ' + margin_text + ' --') Logger.debug('price: ' + truncate(price)) Logger.debug('ema12: ' + truncate(float(df_last['ema12'].values[0]))) Logger.debug('ema26: ' + truncate(float(df_last['ema26'].values[0]))) Logger.debug('ema12gtema26co: ' + str(ema12gtema26co)) Logger.debug('ema12gtema26: ' + str(ema12gtema26)) Logger.debug('ema12ltema26co: ' + str(ema12ltema26co)) Logger.debug('ema12ltema26: ' + str(ema12ltema26)) Logger.debug('sma50: ' + truncate(float(df_last['sma50'].values[0]))) Logger.debug('sma200: ' + truncate(float(df_last['sma200'].values[0]))) Logger.debug('macd: ' + truncate(float(df_last['macd'].values[0]))) Logger.debug('signal: ' + truncate(float(df_last['signal'].values[0]))) Logger.debug('macdgtsignal: ' + str(macdgtsignal)) Logger.debug('macdltsignal: ' + str(macdltsignal)) Logger.debug('obv: ' + str(obv)) Logger.debug('obv_pc: ' + str(obv_pc)) Logger.debug('action: ' + state.action) # informational output on the most recent entry Logger.info('') Logger.info( '================================================================================' ) txt = ' Iteration : ' + str( state.iterations) + bullbeartext Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Timestamp : ' + str(df_last.index.format()[0]) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') Logger.info( '--------------------------------------------------------------------------------' ) txt = ' Close : ' + truncate(price) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' EMA12 : ' + truncate( float(df_last['ema12'].values[0])) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' EMA26 : ' + truncate( float(df_last['ema26'].values[0])) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Crossing Above : ' + str(ema12gtema26co) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Currently Above : ' + str(ema12gtema26) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Crossing Below : ' + str(ema12ltema26co) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Currently Below : ' + str(ema12ltema26) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') if (ema12gtema26 is True and ema12gtema26co is True): txt = ' Condition : EMA12 is currently crossing above EMA26' elif (ema12gtema26 is True and ema12gtema26co is False): txt = ' Condition : EMA12 is currently above EMA26 and has crossed over' elif (ema12ltema26 is True and ema12ltema26co is True): txt = ' Condition : EMA12 is currently crossing below EMA26' elif (ema12ltema26 is True and ema12ltema26co is False): txt = ' Condition : EMA12 is currently below EMA26 and has crossed over' else: txt = ' Condition : -' Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' SMA20 : ' + truncate( float(df_last['sma20'].values[0])) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' SMA200 : ' + truncate( float(df_last['sma200'].values[0])) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') Logger.info( '--------------------------------------------------------------------------------' ) txt = ' MACD : ' + truncate( float(df_last['macd'].values[0])) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Signal : ' + truncate( float(df_last['signal'].values[0])) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Currently Above : ' + str(macdgtsignal) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') txt = ' Currently Below : ' + str(macdltsignal) Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') if (macdgtsignal is True and macdgtsignalco is True): txt = ' Condition : MACD is currently crossing above Signal' elif (macdgtsignal is True and macdgtsignalco is False): txt = ' Condition : MACD is currently above Signal and has crossed over' elif (macdltsignal is True and macdltsignalco is True): txt = ' Condition : MACD is currently crossing below Signal' elif (macdltsignal is True and macdltsignalco is False): txt = ' Condition : MACD is currently below Signal and has crossed over' else: txt = ' Condition : -' Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') Logger.info( '--------------------------------------------------------------------------------' ) txt = ' Action : ' + state.action Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') Logger.info( '================================================================================' ) if state.last_action == 'BUY': txt = ' Margin : ' + margin_text Logger.info(' | ' + txt + (' ' * (75 - len(txt))) + ' | ') Logger.info( '================================================================================' ) # if a buy signal if state.action == 'BUY': state.last_buy_price = price state.last_buy_high = state.last_buy_price # if live if app.isLive(): app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') BUY at ' + price_text) if not app.isVerbose(): Logger.info(formatted_current_df_index + ' | ' + app.getMarket() + ' | ' + app.printGranularity() + ' | ' + price_text + ' | BUY') else: Logger.info( '--------------------------------------------------------------------------------' ) Logger.info( '| *** Executing LIVE Buy Order *** |' ) Logger.info( '--------------------------------------------------------------------------------' ) # display balances Logger.info(app.getBaseCurrency() + ' balance before order: ' + str(account.getBalance(app.getBaseCurrency()))) Logger.info( app.getQuoteCurrency() + ' balance before order: ' + str(account.getBalance(app.getQuoteCurrency()))) # execute a live market buy state.last_buy_size = float( account.getBalance(app.getQuoteCurrency())) if app.getBuyMaxSize( ) and state.last_buy_size > app.getBuyMaxSize(): state.last_buy_size = app.getBuyMaxSize() resp = app.marketBuy(app.getMarket(), state.last_buy_size, app.getBuyPercent()) Logger.debug(resp) # display balances Logger.info(app.getBaseCurrency() + ' balance after order: ' + str(account.getBalance(app.getBaseCurrency()))) Logger.info( app.getQuoteCurrency() + ' balance after order: ' + str(account.getBalance(app.getQuoteCurrency()))) # if not live else: app.notifyTelegram(app.getMarket() + ' (' + app.printGranularity() + ') TEST BUY at ' + price_text) # TODO: Improve simulator calculations by including calculations for buy and sell limit configurations. if state.last_buy_size == 0 and state.last_buy_filled == 0: state.last_buy_size = 1000 state.first_buy_size = 1000 state.buy_count = state.buy_count + 1 state.buy_sum = state.buy_sum + state.last_buy_size if not app.isVerbose(): Logger.info(formatted_current_df_index + ' | ' + app.getMarket() + ' | ' + app.printGranularity() + ' | ' + price_text + ' | BUY') bands = technical_analysis.getFibonacciRetracementLevels( float(price)) Logger.info(' Fibonacci Retracement Levels:' + str(bands)) technical_analysis.printSupportResistanceLevel( float(price)) if len(bands) >= 1 and len(bands) <= 2: if len(bands) == 1: first_key = list(bands.keys())[0] if first_key == 'ratio1': state.fib_low = 0 state.fib_high = bands[first_key] if first_key == 'ratio1_618': state.fib_low = bands[first_key] state.fib_high = bands[first_key] * 2 else: state.fib_low = bands[first_key] elif len(bands) == 2: first_key = list(bands.keys())[0] second_key = list(bands.keys())[1] state.fib_low = bands[first_key] state.fib_high = bands[second_key] else: Logger.info( '--------------------------------------------------------------------------------' ) Logger.info( '| *** Executing TEST Buy Order *** |' ) Logger.info( '--------------------------------------------------------------------------------' ) if app.shouldSaveGraphs(): tradinggraphs = TradingGraphs(technical_analysis) ts = datetime.now().timestamp() filename = app.getMarket() + '_' + app.printGranularity( ) + '_buy_' + str(ts) + '.png' tradinggraphs.renderEMAandMACD(len(trading_data), 'graphs/' + filename, True) # if a sell signal elif state.action == 'SELL': # if live if app.isLive(): app.notifyTelegram( app.getMarket() + ' (' + app.printGranularity() + ') SELL at ' + price_text + ' (margin: ' + margin_text + ', (delta: ' + str(round(price - state.last_buy_price, precision)) + ')') if not app.isVerbose(): Logger.info(formatted_current_df_index + ' | ' + app.getMarket() + ' | ' + app.printGranularity() + ' | ' + price_text + ' | SELL') bands = technical_analysis.getFibonacciRetracementLevels( float(price)) Logger.info(' Fibonacci Retracement Levels:' + str(bands)) if len(bands) >= 1 and len(bands) <= 2: if len(bands) == 1: first_key = list(bands.keys())[0] if first_key == 'ratio1': state.fib_low = 0 state.fib_high = bands[first_key] if first_key == 'ratio1_618': state.fib_low = bands[first_key] state.fib_high = bands[first_key] * 2 else: state.fib_low = bands[first_key] elif len(bands) == 2: first_key = list(bands.keys())[0] second_key = list(bands.keys())[1] state.fib_low = bands[first_key] state.fib_high = bands[second_key] else: Logger.info( '--------------------------------------------------------------------------------' ) Logger.info( '| *** Executing LIVE Sell Order *** |' ) Logger.info( '--------------------------------------------------------------------------------' ) # display balances Logger.info(app.getBaseCurrency() + ' balance before order: ' + str(account.getBalance(app.getBaseCurrency()))) Logger.info( app.getQuoteCurrency() + ' balance before order: ' + str(account.getBalance(app.getQuoteCurrency()))) # execute a live market sell resp = app.marketSell( app.getMarket(), float(account.getBalance(app.getBaseCurrency())), app.getSellPercent()) Logger.debug(resp) # display balances Logger.info(app.getBaseCurrency() + ' balance after order: ' + str(account.getBalance(app.getBaseCurrency()))) Logger.info( app.getQuoteCurrency() + ' balance after order: ' + str(account.getBalance(app.getQuoteCurrency()))) # if not live else: margin, profit, sell_fee = calculate_margin( buy_size=state.last_buy_size, buy_filled=state.last_buy_filled, buy_price=state.last_buy_price, buy_fee=state.last_buy_fee, sell_percent=app.getSellPercent(), sell_price=price, sell_taker_fee=app.getTakerFee()) if state.last_buy_size > 0: margin_text = truncate(margin) + '%' else: margin_text = '0%' app.notifyTelegram( app.getMarket() + ' (' + app.printGranularity() + ') TEST SELL at ' + price_text + ' (margin: ' + margin_text + ', (delta: ' + str(round(price - state.last_buy_price, precision)) + ')') # Preserve next buy values for simulator state.sell_count = state.sell_count + 1 buy_size = ((app.getSellPercent() / 100) * ((price / state.last_buy_price) * (state.last_buy_size - state.last_buy_fee))) state.last_buy_size = buy_size - sell_fee state.sell_sum = state.sell_sum + state.last_buy_size if not app.isVerbose(): if price > 0: margin_text = truncate(margin) + '%' else: margin_text = '0%' Logger.info(formatted_current_df_index + ' | ' + app.getMarket() + ' | ' + app.printGranularity() + ' | SELL | ' + str(price) + ' | BUY | ' + str(state.last_buy_price) + ' | DIFF | ' + str(price - state.last_buy_price) + ' | DIFF | ' + str(profit) + ' | MARGIN NO FEES | ' + margin_text + ' | MARGIN FEES | ' + str(round(sell_fee, precision))) else: Logger.info( '--------------------------------------------------------------------------------' ) Logger.info( '| *** Executing TEST Sell Order *** |' ) Logger.info( '--------------------------------------------------------------------------------' ) if app.shouldSaveGraphs(): tradinggraphs = TradingGraphs(technical_analysis) ts = datetime.now().timestamp() filename = app.getMarket() + '_' + app.printGranularity( ) + '_sell_' + str(ts) + '.png' tradinggraphs.renderEMAandMACD(len(trading_data), 'graphs/' + filename, True) # last significant action if state.action in ['BUY', 'SELL']: state.last_action = state.action state.last_df_index = str(df_last.index.format()[0]) if not app.isLive() and state.iterations == len(df): Logger.info("\nSimulation Summary: ") if state.buy_count > state.sell_count and app.allowSellAtLoss( ): # Calculate last sell size state.last_buy_size = ((app.getSellPercent() / 100) * ( (price / state.last_buy_price) * (state.last_buy_size - state.last_buy_fee))) # Reduce sell fee from last sell size state.last_buy_size = state.last_buy_size - state.last_buy_price * app.getTakerFee( ) state.sell_sum = state.sell_sum + state.last_buy_size state.sell_count = state.sell_count + 1 elif state.buy_count > state.sell_count and not app.allowSellAtLoss( ): Logger.info("\n") Logger.info( ' Note : "sell at loss" is disabled and you have an open trade, if the margin' ) Logger.info( ' result below is negative it will assume you sold at the end of the' ) Logger.info( ' simulation which may not be ideal. Try setting --sellatloss 1' ) Logger.info("\n") Logger.info(' Buy Count : ' + str(state.buy_count)) Logger.info(' Sell Count : ' + str(state.sell_count)) Logger.info(' First Buy : ' + str(state.first_buy_size)) Logger.info(' Last Sell : ' + str(state.last_buy_size)) app.notifyTelegram( f"Simulation Summary\n Buy Count: {state.buy_count}\n Sell Count: {state.sell_count}\n First Buy: {state.first_buy_size}\n Last Sell: {state.last_buy_size}\n" ) if state.sell_count > 0: Logger.info("\n") Logger.info(' Margin : ' + _truncate(( ((state.last_buy_size - state.first_buy_size) / state.first_buy_size) * 100), 4) + '%') Logger.info("\n") Logger.info( ' ** non-live simulation, assuming highest fees') app.notifyTelegram( f" Margin: {_truncate((((state.last_buy_size - state.first_buy_size) / state.first_buy_size) * 100), 4)}%\n ** non-live simulation, assuming highest fees\n" ) else: if state.last_buy_size > 0 and state.last_buy_price > 0 and price > 0 and state.last_action == 'BUY': # show profit and margin if already bought Logger.info(now + ' | ' + app.getMarket() + bullbeartext + ' | ' + app.printGranularity() + ' | Current Price: ' + str(price) + ' | Margin: ' + str(margin) + ' | Profit: ' + str(profit)) else: Logger.info(now + ' | ' + app.getMarket() + bullbeartext + ' | ' + app.printGranularity() + ' | Current Price: ' + str(price)) # decrement ignored iteration state.iterations = state.iterations - 1 # if live if not app.disableTracker() and app.isLive(): # update order tracker csv if app.getExchange() == 'binance': account.saveTrackerCSV(app.getMarket()) elif app.getExchange() == 'coinbasepro': account.saveTrackerCSV() if app.isSimulation(): if state.iterations < 300: if app.simuluationSpeed() in ['fast', 'fast-sample']: # fast processing list(map(s.cancel, s.queue)) s.enter(0, 1, executeJob, (sc, app, state, df)) else: # slow processing list(map(s.cancel, s.queue)) s.enter(1, 1, executeJob, (sc, app, state, df)) else: # poll every 1 minute list(map(s.cancel, s.queue)) s.enter(60, 1, executeJob, (sc, app, state))
import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as ticker from models.Trading import TechnicalAnalysis from models.CoinbasePro import PublicAPI from views.TradingGraphs import TradingGraphs market = 'BTC-GBP' granularity = 3600 api = PublicAPI() tradingData = api.getHistoricalData(market, granularity) technicalAnalysis = TechnicalAnalysis(tradingData) technicalAnalysis.addEMA(12) technicalAnalysis.addEMA(26) technicalAnalysis.addCandleHammer() technicalAnalysis.addCandleInvertedHammer() technicalAnalysis.addCandleShootingStar() technicalAnalysis.addCandleHangingMan() technicalAnalysis.addCandleThreeWhiteSoldiers() technicalAnalysis.addCandleThreeBlackCrows() technicalAnalysis.addCandleDojo() technicalAnalysis.addCandleThreeLineStrike() technicalAnalysis.addCandleTwoBlackGapping() technicalAnalysis.addCandleEveningStar() technicalAnalysis.addCandleAbandonedBaby() df = technicalAnalysis.getDataFrame() tradinggraphs = TradingGraphs(technicalAnalysis) tradinggraphs.renderEMA12EMA26CloseCandles(market, granularity) #tradinggraphs.renderEMA12EMA26CloseCandles(market, granularity, 30, 'candles.png')
from models.CoinbasePro import CoinbasePro from views.TradingGraphs import TradingGraphs coinbasepro = CoinbasePro() print(coinbasepro.getDataFrame()) coinbasepro.addMovingAverages() print(coinbasepro.getDataFrame()) coinbasepro.addMomentumIndicators() print(coinbasepro.getDataFrame()) print(coinbasepro.getSupportResistanceLevels()) coinbasepro.saveCSV() tradinggraphs = TradingGraphs(coinbasepro) tradinggraphs.renderEMAandMACD() #tradinggraphs.renderSMAandMACD() #tradinggraphs.renderPriceSupportResistance()
def executeJob(sc, app=PyCryptoBot(), trading_data=pd.DataFrame()): """Trading bot job which runs at a scheduled interval""" global action, buy_count, buy_sum, iterations, last_action, last_buy, eri_text, last_df_index, sell_count, sell_sum, buy_state, fib_high, fib_low # increment iterations iterations = iterations + 1 if app.isSimulation() == 0: # retrieve the app.getMarket() data trading_data = app.getHistoricalData(app.getMarket(), app.getGranularity()) else: if len(trading_data) == 0: return None # analyse the market data trading_dataCopy = trading_data.copy() ta = TechnicalAnalysis(trading_dataCopy) ta.addAll() df = ta.getDataFrame() if app.isSimulation() == 1: # with a simulation df_last will iterate through data df_last = df.iloc[iterations-1:iterations] else: # df_last contains the most recent entry df_last = df.tail(1) if len(df_last.index.format()) > 0: current_df_index = str(df_last.index.format()[0]) else: current_df_index = last_df_index if app.getSmartSwitch() == 1 and app.getExchange() == 'binance' and app.getGranularity() == '1h' and app.is1hEMA1226Bull() == True and app.is6hEMA1226Bull() == True: print ("*** smart switch from granularity '1h' (1 hour) to '15m' (15 min) ***") # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + " smart switch from granularity '1h' (1 hour) to '15m' (15 min)") app.setGranularity('15m') list(map(s.cancel, s.queue)) s.enter(5, 1, executeJob, (sc, app)) elif app.getSmartSwitch() == 1 and app.getExchange() == 'coinbasepro' and app.getGranularity() == 3600 and app.is1hEMA1226Bull() == True and app.is6hEMA1226Bull() == True: print ('*** smart switch from granularity 3600 (1 hour) to 900 (15 min) ***') # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + " smart switch from granularity 3600 (1 hour) to 900 (15 min)") app.setGranularity(900) list(map(s.cancel, s.queue)) s.enter(5, 1, executeJob, (sc, app)) if app.getSmartSwitch() == 1 and app.getExchange() == 'binance' and app.getGranularity() == '15m' and app.is1hEMA1226Bull() == False and app.is6hEMA1226Bull() == False: print ("*** smart switch from granularity '15m' (15 min) to '1h' (1 hour) ***") # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + " smart switch from granularity '15m' (15 min) to '1h' (1 hour)") app.setGranularity('1h') list(map(s.cancel, s.queue)) s.enter(5, 1, executeJob, (sc, app)) elif app.getSmartSwitch() == 1 and app.getExchange() == 'coinbasepro' and app.getGranularity() == 900 and app.is1hEMA1226Bull() == False and app.is6hEMA1226Bull() == False: print ("*** smart switch from granularity 900 (15 min) to 3600 (1 hour) ***") # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + " smart switch from granularity 900 (15 min) to 3600 (1 hour)") app.setGranularity(3600) list(map(s.cancel, s.queue)) s.enter(5, 1, executeJob, (sc, app)) if app.getExchange() == 'binance' and str(app.getGranularity()) == '1d': if len(df) < 250: # data frame should have 250 rows, if not retry print('error: data frame length is < 250 (' + str(len(df)) + ')') logging.error('error: data frame length is < 250 (' + str(len(df)) + ')') list(map(s.cancel, s.queue)) s.enter(300, 1, executeJob, (sc, app)) else: if len(df) < 300: # data frame should have 300 rows, if not retry print('error: data frame length is < 300 (' + str(len(df)) + ')') logging.error('error: data frame length is < 300 (' + str(len(df)) + ')') list(map(s.cancel, s.queue)) s.enter(300, 1, executeJob, (sc, app)) if len(df_last) > 0: if app.isSimulation() == 0: price = app.getTicker(app.getMarket()) if price < df_last['low'].values[0] or price == 0: price = float(df_last['close'].values[0]) else: price = float(df_last['close'].values[0]) if price < 0.0001: raise Exception(app.getMarket() + ' is unsuitable for trading, quote price is less than 0.0001!') # technical indicators ema12gtema26 = bool(df_last['ema12gtema26'].values[0]) ema12gtema26co = bool(df_last['ema12gtema26co'].values[0]) goldencross = bool(df_last['goldencross'].values[0]) #deathcross = bool(df_last['deathcross'].values[0]) macdgtsignal = bool(df_last['macdgtsignal'].values[0]) macdgtsignalco = bool(df_last['macdgtsignalco'].values[0]) ema12ltema26 = bool(df_last['ema12ltema26'].values[0]) ema12ltema26co = bool(df_last['ema12ltema26co'].values[0]) macdltsignal = bool(df_last['macdltsignal'].values[0]) macdltsignalco = bool(df_last['macdltsignalco'].values[0]) obv = float(df_last['obv'].values[0]) obv_pc = float(df_last['obv_pc'].values[0]) elder_ray_buy = bool(df_last['eri_buy'].values[0]) elder_ray_sell = bool(df_last['eri_sell'].values[0]) # candlestick detection hammer = bool(df_last['hammer'].values[0]) inverted_hammer = bool(df_last['inverted_hammer'].values[0]) hanging_man = bool(df_last['hanging_man'].values[0]) shooting_star = bool(df_last['shooting_star'].values[0]) three_white_soldiers = bool(df_last['three_white_soldiers'].values[0]) three_black_crows = bool(df_last['three_black_crows'].values[0]) morning_star = bool(df_last['morning_star'].values[0]) evening_star = bool(df_last['evening_star'].values[0]) three_line_strike = bool(df_last['three_line_strike'].values[0]) abandoned_baby = bool(df_last['abandoned_baby'].values[0]) morning_doji_star = bool(df_last['morning_doji_star'].values[0]) evening_doji_star = bool(df_last['evening_doji_star'].values[0]) two_black_gapping = bool(df_last['two_black_gapping'].values[0]) # criteria for a buy signal if ema12gtema26co == True and macdgtsignal == True and goldencross == True and obv_pc > -5 and elder_ray_buy == True and last_action != 'BUY': action = 'BUY' # criteria for a sell signal elif ema12ltema26co == True and macdltsignal == True and last_action not in ['','SELL']: action = 'SELL' # anything other than a buy or sell, just wait else: action = 'WAIT' last_buy_minus_fees = 0 if last_buy > 0 and last_action == 'BUY': change_pcnt = ((price / last_buy) - 1) * 100 # calculate last buy minus fees fee = last_buy * 0.005 last_buy_minus_fees = last_buy + fee margin = ((price - last_buy_minus_fees) / price) * 100 # loss failsafe sell at fibonacci band if app.allowSellAtLoss() and app.sellLowerPcnt() == None and fib_low > 0 and fib_low >= float(price): action = 'SELL' last_action = 'BUY' log_text = '! Loss Failsafe Triggered (Fibonacci Band: ' + str(fib_low) + ')' print (log_text, "\n") logging.warning(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) # loss failsafe sell at sell_lower_pcnt if app.allowSellAtLoss() and app.sellLowerPcnt() != None and change_pcnt < app.sellLowerPcnt(): action = 'SELL' last_action = 'BUY' log_text = '! Loss Failsafe Triggered (< ' + str(app.sellLowerPcnt()) + '%)' print (log_text, "\n") logging.warning(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) if app.getSmartSwitch() == 1 and app.getExchange() == 'binance' and app.getGranularity() == '15m' and change_pcnt >= 2: # profit bank at 2% in smart switched mode action = 'SELL' last_action = 'BUY' log_text = '! Profit Bank Triggered (Smart Switch 2%)' print (log_text, "\n") logging.warning(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) if app.getSmartSwitch() == 1 and app.getExchange() == 'coinbasepro' and app.getGranularity() == 900 and change_pcnt >= 2: # profit bank at 2% in smart switched mode action = 'SELL' last_action = 'BUY' log_text = '! Profit Bank Triggered (Smart Switch 2%)' print (log_text, "\n") logging.warning(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) # profit bank at sell_upper_pcnt if app.sellUpperPcnt() != None and change_pcnt > app.sellUpperPcnt(): action = 'SELL' last_action = 'BUY' log_text = '! Profit Bank Triggered (> ' + str(app.sellUpperPcnt()) + '%)' print (log_text, "\n") logging.warning(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) # profit bank at sell at fibonacci band if margin > 3 and app.sellUpperPcnt() != None and fib_high > fib_low and fib_high <= float(price): action = 'SELL' last_action = 'BUY' log_text = '! Profit Bank Triggered (Fibonacci Band: ' + str(fib_high) + ')' print (log_text, "\n") logging.warning(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) # profit bank when strong reversal detected if margin > 3 and obv_pc < 0 and macdltsignal == True: action = 'SELL' last_action = 'BUY' log_text = '! Profit Bank Triggered (Strong Reversal Detected)' print (log_text, "\n") logging.warning(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) # configuration specifies to not sell at a loss if not app.allowSellAtLoss() and margin <= 0: action = 'WAIT' last_action = 'BUY' log_text = '! Ignore Sell Signal (No Sell At Loss)' print (log_text, "\n") logging.warning(log_text) bullbeartext = '' if df_last['sma50'].values[0] == df_last['sma200'].values[0]: bullbeartext = '' elif goldencross == True: bullbeartext = ' (BULL)' elif goldencross == False: bullbeartext = ' (BEAR)' # polling is every 5 minutes (even for hourly intervals), but only process once per interval if (last_df_index != current_df_index): precision = 2 if (price < 0.01): precision = 8 price_text = 'Close: ' + str(app.truncate(price, precision)) ema_text = app.compare(df_last['ema12'].values[0], df_last['ema26'].values[0], 'EMA12/26', precision) macd_text = app.compare(df_last['macd'].values[0], df_last['signal'].values[0], 'MACD', precision) obv_text = 'OBV: ' + str(app.truncate(df_last['obv'].values[0], 4)) + ' (' + str(app.truncate(df_last['obv_pc'].values[0], 2)) + '%)' if elder_ray_buy == True: eri_text = 'ERI: buy' elif elder_ray_sell == True: eri_text = 'ERI: sell' else: eri_text = 'ERI:' if hammer == True: log_text = '* Candlestick Detected: Hammer ("Weak - Reversal - Bullish Signal - Up")' print (log_text, "\n") logging.debug(log_text) if shooting_star == True: log_text = '* Candlestick Detected: Shooting Star ("Weak - Reversal - Bearish Pattern - Down")' print (log_text, "\n") logging.debug(log_text) if hanging_man == True: log_text = '* Candlestick Detected: Hanging Man ("Weak - Continuation - Bearish Pattern - Down")' print (log_text, "\n") logging.debug(log_text) if inverted_hammer == True: log_text = '* Candlestick Detected: Inverted Hammer ("Weak - Continuation - Bullish Pattern - Up")' print (log_text, "\n") logging.debug(log_text) if three_white_soldiers == True: log_text = '*** Candlestick Detected: Three White Soldiers ("Strong - Reversal - Bullish Pattern - Up")' print (log_text, "\n") logging.debug(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) if three_black_crows == True: log_text = '* Candlestick Detected: Three Black Crows ("Strong - Reversal - Bearish Pattern - Down")' print (log_text, "\n") logging.debug(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) if morning_star == True: log_text = '*** Candlestick Detected: Morning Star ("Strong - Reversal - Bullish Pattern - Up")' print (log_text, "\n") logging.debug(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) if evening_star == True: log_text = '*** Candlestick Detected: Evening Star ("Strong - Reversal - Bearish Pattern - Down")' print (log_text, "\n") logging.debug(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) if three_line_strike == True: log_text = '** Candlestick Detected: Three Line Strike ("Reliable - Reversal - Bullish Pattern - Up")' print (log_text, "\n") logging.debug(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) if abandoned_baby == True: log_text = '** Candlestick Detected: Abandoned Baby ("Reliable - Reversal - Bullish Pattern - Up")' print (log_text, "\n") logging.debug(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) if morning_doji_star == True: log_text = '** Candlestick Detected: Morning Doji Star ("Reliable - Reversal - Bullish Pattern - Up")' print (log_text, "\n") logging.debug(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) if evening_doji_star == True: log_text = '** Candlestick Detected: Evening Doji Star ("Reliable - Reversal - Bearish Pattern - Down")' print (log_text, "\n") logging.debug(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) if two_black_gapping == True: log_text = '*** Candlestick Detected: Two Black Gapping ("Reliable - Reversal - Bearish Pattern - Down")' print (log_text, "\n") logging.debug(log_text) # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') ' + log_text) ema_co_prefix = '' ema_co_suffix = '' if ema12gtema26co == True: ema_co_prefix = '*^ ' ema_co_suffix = ' ^*' elif ema12ltema26co == True: ema_co_prefix = '*v ' ema_co_suffix = ' v*' elif ema12gtema26 == True: ema_co_prefix = '^ ' ema_co_suffix = ' ^' elif ema12ltema26 == True: ema_co_prefix = 'v ' ema_co_suffix = ' v' macd_co_prefix = '' macd_co_suffix = '' if macdgtsignalco == True: macd_co_prefix = '*^ ' macd_co_suffix = ' ^*' elif macdltsignalco == True: macd_co_prefix = '*v ' macd_co_suffix = ' v*' elif macdgtsignal == True: macd_co_prefix = '^ ' macd_co_suffix = ' ^' elif macdltsignal == True: macd_co_prefix = 'v ' macd_co_suffix = ' v' obv_prefix = '' obv_suffix = '' if float(obv_pc) > 0: obv_prefix = '^ ' obv_suffix = ' ^' elif float(obv_pc) < 0: obv_prefix = 'v ' obv_suffix = ' v' if app.isVerbose() == 0: if last_action != '': output_text = current_df_index + ' | ' + app.getMarket() + bullbeartext + ' | ' + str(app.getGranularity()) + ' | ' + price_text + ' | ' + ema_co_prefix + ema_text + ema_co_suffix + ' | ' + macd_co_prefix + macd_text + macd_co_suffix + ' | ' + obv_prefix + obv_text + obv_suffix + ' | ' + eri_text + ' | ' + action + ' | Last Action: ' + last_action else: output_text = current_df_index + ' | ' + app.getMarket() + bullbeartext + ' | ' + str(app.getGranularity()) + ' | ' + price_text + ' | ' + ema_co_prefix + ema_text + ema_co_suffix + ' | ' + macd_co_prefix + macd_text + macd_co_suffix + ' | ' + obv_prefix + obv_text + obv_suffix + ' | ' + eri_text + ' | ' + action + ' ' if last_action == 'BUY': if last_buy_minus_fees > 0: margin = str(app.truncate((((price - last_buy_minus_fees) / price) * 100), 2)) + '%' else: margin = '0%' output_text += ' | ' + margin logging.debug(output_text) print (output_text) else: logging.debug('-- Iteration: ' + str(iterations) + ' --' + bullbeartext) if last_action == 'BUY': margin = str(app.truncate((((price - last_buy) / price) * 100), 2)) + '%' logging.debug('-- Margin: ' + margin + '% --') logging.debug('price: ' + str(app.truncate(price, precision))) logging.debug('ema12: ' + str(app.truncate(float(df_last['ema12'].values[0]), precision))) logging.debug('ema26: ' + str(app.truncate(float(df_last['ema26'].values[0]), precision))) logging.debug('ema12gtema26co: ' + str(ema12gtema26co)) logging.debug('ema12gtema26: ' + str(ema12gtema26)) logging.debug('ema12ltema26co: ' + str(ema12ltema26co)) logging.debug('ema12ltema26: ' + str(ema12ltema26)) logging.debug('sma50: ' + str(app.truncate(float(df_last['sma50'].values[0]), precision))) logging.debug('sma200: ' + str(app.truncate(float(df_last['sma200'].values[0]), precision))) logging.debug('macd: ' + str(app.truncate(float(df_last['macd'].values[0]), precision))) logging.debug('signal: ' + str(app.truncate(float(df_last['signal'].values[0]), precision))) logging.debug('macdgtsignal: ' + str(macdgtsignal)) logging.debug('macdltsignal: ' + str(macdltsignal)) logging.debug('obv: ' + str(obv)) logging.debug('obv_pc: ' + str(obv_pc)) logging.debug('action: ' + action) # informational output on the most recent entry print('') print('================================================================================') txt = ' Iteration : ' + str(iterations) + bullbeartext print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Timestamp : ' + str(df_last.index.format()[0]) print('|', txt, (' ' * (75 - len(txt))), '|') print('--------------------------------------------------------------------------------') txt = ' Close : ' + str(app.truncate(price, precision)) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' EMA12 : ' + str(app.truncate(float(df_last['ema12'].values[0]), precision)) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' EMA26 : ' + str(app.truncate(float(df_last['ema26'].values[0]), precision)) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Crossing Above : ' + str(ema12gtema26co) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Currently Above : ' + str(ema12gtema26) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Crossing Below : ' + str(ema12ltema26co) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Currently Below : ' + str(ema12ltema26) print('|', txt, (' ' * (75 - len(txt))), '|') if (ema12gtema26 == True and ema12gtema26co == True): txt = ' Condition : EMA12 is currently crossing above EMA26' elif (ema12gtema26 == True and ema12gtema26co == False): txt = ' Condition : EMA12 is currently above EMA26 and has crossed over' elif (ema12ltema26 == True and ema12ltema26co == True): txt = ' Condition : EMA12 is currently crossing below EMA26' elif (ema12ltema26 == True and ema12ltema26co == False): txt = ' Condition : EMA12 is currently below EMA26 and has crossed over' else: txt = ' Condition : -' print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' SMA20 : ' + str(app.truncate(float(df_last['sma20'].values[0]), precision)) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' SMA200 : ' + str(app.truncate(float(df_last['sma200'].values[0]), precision)) print('|', txt, (' ' * (75 - len(txt))), '|') print('--------------------------------------------------------------------------------') txt = ' MACD : ' + str(app.truncate(float(df_last['macd'].values[0]), precision)) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Signal : ' + str(app.truncate(float(df_last['signal'].values[0]), precision)) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Currently Above : ' + str(macdgtsignal) print('|', txt, (' ' * (75 - len(txt))), '|') txt = ' Currently Below : ' + str(macdltsignal) print('|', txt, (' ' * (75 - len(txt))), '|') if (macdgtsignal == True and macdgtsignalco == True): txt = ' Condition : MACD is currently crossing above Signal' elif (macdgtsignal == True and macdgtsignalco == False): txt = ' Condition : MACD is currently above Signal and has crossed over' elif (macdltsignal == True and macdltsignalco == True): txt = ' Condition : MACD is currently crossing below Signal' elif (macdltsignal == True and macdltsignalco == False): txt = ' Condition : MACD is currently below Signal and has crossed over' else: txt = ' Condition : -' print('|', txt, (' ' * (75 - len(txt))), '|') print('--------------------------------------------------------------------------------') txt = ' Action : ' + action print('|', txt, (' ' * (75 - len(txt))), '|') print('================================================================================') if last_action == 'BUY': txt = ' Margin : ' + margin + '%' print('|', txt, (' ' * (75 - len(txt))), '|') print('================================================================================') # if a buy signal if action == 'BUY': last_buy = price buy_count = buy_count + 1 fee = float(price) * 0.005 price_incl_fees = float(price) + fee buy_sum = buy_sum + price_incl_fees # if live if app.isLive() == 1: # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') BUY at ' + price_text) if app.isVerbose() == 0: logging.info(current_df_index + ' | ' + app.getMarket() + ' ' + str(app.getGranularity()) + ' | ' + price_text + ' | BUY') print ("\n", current_df_index, '|', app.getMarket(), str(app.getGranularity()), '|', price_text, '| BUY', "\n") else: print('--------------------------------------------------------------------------------') print('| *** Executing LIVE Buy Order *** |') print('--------------------------------------------------------------------------------') # display balances print (app.getBaseCurrency(), 'balance before order:', account.getBalance(app.getBaseCurrency())) print (app.getQuoteCurrency(), 'balance before order:', account.getBalance(app.getQuoteCurrency())) # execute a live market buy resp = app.marketBuy(app.getMarket(), float(account.getBalance(app.getQuoteCurrency()))) logging.info(resp) # display balances print (app.getBaseCurrency(), 'balance after order:', account.getBalance(app.getBaseCurrency())) print (app.getQuoteCurrency(), 'balance after order:', account.getBalance(app.getQuoteCurrency())) # if not live else: if app.isVerbose() == 0: logging.info(current_df_index + ' | ' + app.getMarket() + ' ' + str(app.getGranularity()) + ' | ' + price_text + ' | BUY') print ("\n", current_df_index, '|', app.getMarket(), str(app.getGranularity()), '|', price_text, '| BUY') bands = ta.getFibonacciRetracementLevels(float(price)) print (' Fibonacci Retracement Levels:', str(bands)) ta.printSupportResistanceLevel(float(price)) if len(bands) >= 1 and len(bands) <= 2: if len(bands) == 1: first_key = list(bands.keys())[0] if first_key == 'ratio1': fib_low = 0 fib_high = bands[first_key] if first_key == 'ratio1_618': fib_low = bands[first_key] fib_high = bands[first_key] * 2 else: fib_low = bands[first_key] elif len(bands) == 2: first_key = list(bands.keys())[0] second_key = list(bands.keys())[1] fib_low = bands[first_key] fib_high = bands[second_key] else: print('--------------------------------------------------------------------------------') print('| *** Executing TEST Buy Order *** |') print('--------------------------------------------------------------------------------') if app.shouldSaveGraphs() == 1: tradinggraphs = TradingGraphs(ta) ts = datetime.now().timestamp() filename = app.getMarket() + '_' + str(app.getGranularity()) + '_buy_' + str(ts) + '.png' tradinggraphs.renderEMAandMACD(len(trading_data), 'graphs/' + filename, True) # if a sell signal elif action == 'SELL': sell_count = sell_count + 1 fee = float(price) * 0.005 price_incl_fees = float(price) - fee sell_sum = sell_sum + price_incl_fees # if live if app.isLive() == 1: # telegram if app.isTelegramEnabled(): telegram = Telegram(app.getTelegramToken(), app.getTelegramClientId()) telegram.send(app.getMarket() + ' (' + str(app.getGranularity()) + ') SELL at ' + price_text) if app.isVerbose() == 0: logging.info(current_df_index + ' | ' + app.getMarket() + ' ' + str(app.getGranularity()) + ' | ' + price_text + ' | SELL') print ("\n", current_df_index, '|', app.getMarket(), str(app.getGranularity()), '|', price_text, '| SELL') bands = ta.getFibonacciRetracementLevels(float(price)) print (' Fibonacci Retracement Levels:', str(bands), "\n") if len(bands) >= 1 and len(bands) <= 2: if len(bands) == 1: first_key = list(bands.keys())[0] if first_key == 'ratio1': fib_low = 0 fib_high = bands[first_key] if first_key == 'ratio1_618': fib_low = bands[first_key] fib_high = bands[first_key] * 2 else: fib_low = bands[first_key] elif len(bands) == 2: first_key = list(bands.keys())[0] second_key = list(bands.keys())[1] fib_low = bands[first_key] fib_high = bands[second_key] else: print('--------------------------------------------------------------------------------') print('| *** Executing LIVE Sell Order *** |') print('--------------------------------------------------------------------------------') # display balances print (app.getBaseCurrency(), 'balance before order:', account.getBalance(app.getBaseCurrency())) print (app.getQuoteCurrency(), 'balance before order:', account.getBalance(app.getQuoteCurrency())) # execute a live market sell resp = app.marketSell(app.getMarket(), float(account.getBalance(app.getBaseCurrency()))) logging.info(resp) # display balances print (app.getBaseCurrency(), 'balance after order:', account.getBalance(app.getBaseCurrency())) print (app.getQuoteCurrency(), 'balance after order:', account.getBalance(app.getQuoteCurrency())) # if not live else: if app.isVerbose() == 0: sell_price = float(str(app.truncate(price, precision))) last_buy_price = float(str(app.truncate(float(last_buy), precision))) buy_sell_diff = round(np.subtract(sell_price, last_buy_price), precision) if (sell_price != 0): buy_sell_margin_no_fees = str(app.truncate((((sell_price - last_buy_price) / sell_price) * 100), 2)) + '%' else: buy_sell_margin_no_fees = '0%' # calculate last buy minus fees buy_fee = last_buy_price * 0.005 last_buy_price_minus_fees = last_buy_price + buy_fee if (sell_price != 0): buy_sell_margin_fees = str(app.truncate((((sell_price - last_buy_price_minus_fees) / sell_price) * 100), 2)) + '%' else: buy_sell_margin_fees = '0%' logging.info(current_df_index + ' | ' + app.getMarket() + ' ' + str(app.getGranularity()) + ' | SELL | ' + str(sell_price) + ' | BUY | ' + str(last_buy_price) + ' | DIFF | ' + str(buy_sell_diff) + ' | MARGIN NO FEES | ' + str(buy_sell_margin_no_fees) + ' | MARGIN FEES | ' + str(buy_sell_margin_fees)) print ("\n", current_df_index, '|', app.getMarket(), str(app.getGranularity()), '| SELL |', str(sell_price), '| BUY |', str(last_buy_price), '| DIFF |', str(buy_sell_diff) , '| MARGIN NO FEES |', str(buy_sell_margin_no_fees), '| MARGIN FEES |', str(buy_sell_margin_fees), "\n") else: print('--------------------------------------------------------------------------------') print('| *** Executing TEST Sell Order *** |') print('--------------------------------------------------------------------------------') if app.shouldSaveGraphs() == 1: tradinggraphs = TradingGraphs(ta) ts = datetime.now().timestamp() filename = app.getMarket() + '_' + str(app.getGranularity()) + '_sell_' + str(ts) + '.png' tradinggraphs.renderEMAandMACD(len(trading_data), 'graphs/' + filename, True) # last significant action if action in [ 'BUY', 'SELL' ]: last_action = action last_df_index = str(df_last.index.format()[0]) if iterations == len(df): print ("\nSimulation Summary\n") if buy_count > sell_count: fee = price * 0.005 last_price_minus_fees = price - fee sell_sum = sell_sum + last_price_minus_fees sell_count = sell_count + 1 print (' Buy Count :', buy_count) print (' Sell Count :', sell_count, "\n") if sell_count > 0: print (' Margin :', str(app.truncate((((sell_sum - buy_sum) / sell_sum) * 100), 2)) + '%', "\n") print (' ** non-live simulation, assuming highest fees', "\n") else: print (str(app.getTime()), '|', app.getMarket() + bullbeartext, '|', str(app.getGranularity()), '| Current Price:', price) # decrement ignored iteration iterations = iterations - 1 # if live if app.isLive() == 1: # update order tracker csv if app.getExchange() == 'binance': account.saveTrackerCSV(app.getMarket()) elif app.getExchange() == 'coinbasepro': account.saveTrackerCSV() if app.isSimulation() == 1: if iterations < 300: if app.simuluationSpeed() in [ 'fast', 'fast-sample' ]: # fast processing executeJob(sc, app, trading_data) else: # slow processing list(map(s.cancel, s.queue)) s.enter(1, 1, executeJob, (sc, app, trading_data)) else: # poll every 5 minute list(map(s.cancel, s.queue)) s.enter(300, 1, executeJob, (sc, app))
"""Trading Graphs object model examples""" import pandas as pd from models.Trading import TechnicalAnalysis from models.CoinbasePro import PublicAPI from views.TradingGraphs import TradingGraphs api = PublicAPI() tradingData = api.getHistoricalData('BTC-GBP', 3600) technicalAnalysis = TechnicalAnalysis(tradingData) technicalAnalysis.addAll() tradinggraphs = TradingGraphs(technicalAnalysis) """Uncomment the diagram to display""" tradinggraphs.renderPriceEMA12EMA26() #tradinggraphs.renderEMAandMACD() #tradinggraphs.renderSMAandMACD() #tradinggraphs.renderBuySellSignalEMA1226() #tradinggraphs.renderBuySellSignalEMA1226MACD() #tradinggraphs.renderPriceSupportResistance() #tradinggraphs.renderSeasonalARIMAModel() #tradinggraphs.renderSeasonalARIMAModelPredictionDays(5)
"""Trading Graphs object model examples""" import pandas as pd from datetime import datetime from models.Trading import TechnicalAnalysis from models.CoinbasePro import PublicAPI from views.TradingGraphs import TradingGraphs api = PublicAPI() tradingData = api.getHistoricalData('BTC-GBP', 3600) technicalAnalysis = TechnicalAnalysis(tradingData) technicalAnalysis.addAll() tradinggraphs = TradingGraphs(technicalAnalysis) """Uncomment the diagram to display""" #tradinggraphs.renderEMAandMACD() #tradinggraphs.renderEMAandMACD(24) ts = datetime.now().timestamp() filename = 'BTC-GBP_3600_' + str(ts) + '.png' tradinggraphs.renderEMAandMACD(24, 'graphs/' + filename, True) #tradinggraphs.renderPriceEMA12EMA26() #tradinggraphs.renderEMAandMACD() #tradinggraphs.renderSMAandMACD() #tradinggraphs.renderBuySellSignalEMA1226() #tradinggraphs.renderBuySellSignalEMA1226MACD()
def runExperiment(id, market='BTC-GBP', granularity=3600, mostRecent=True): """Run an experiment Parameters ---------- market : str A valid market/product from the Coinbase Pro exchange. (Default: 'BTC-GBP') granularity : int A valid market interval {60, 300, 900, 3600, 21600, 86400} (Default: 86400 - 1 day) """ if not isinstance(id, int): raise TypeError('ID not numeric.') if id < 0: raise TypeError('ID is invalid.') p = re.compile(r"^[A-Z]{3,4}\-[A-Z]{3,4}$") if not p.match(market): raise TypeError('Coinbase Pro market required.') cryptoMarket, fiatMarket = market.split('-', 2) if not isinstance(granularity, int): raise TypeError('Granularity integer required.') if not granularity in [60, 300, 900, 3600, 21600, 86400]: raise TypeError( 'Granularity options: 60, 300, 900, 3600, 21600, 86400.') if not isinstance(mostRecent, bool): raise TypeError('Most recent is a boolean.') print('Experiment #' + str(id) + "\n") endDate = datetime.now() - timedelta(hours=random.randint( 0, 8760 * 3)) # 3 years in hours startDate = endDate - timedelta(hours=300) if mostRecent == True: startDate = '' endDate = '' print('Start date:', (datetime.now() - timedelta(hours=300)).isoformat()) print(' End date:', datetime.now().isoformat()) print('') else: startDate = str(startDate.isoformat()) endDate = str(endDate.isoformat()) print('Start date:', startDate) print(' End date:', endDate) print('') # instantiate a non-live trade account account = TradingAccount() # instantiate a CoinbassePro object with desired criteria coinbasepro = CoinbasePro(market, granularity, startDate, endDate) # adds buy and sell signals to Pandas DataFrame coinbasepro.addEMABuySignals() coinbasepro.addMACDBuySignals() # stores the Pandas Dataframe in df df = coinbasepro.getDataFrame() # defines the buy and sell signals and consolidates into df_signals buysignals = ((df.ema12gtema26co == True) & (df.macdgtsignal == True) & (df.obv_pc > 0)) | ((df.ema12gtema26 == True) & (df.ema12gtema26 == True) & (df.macdgtsignal == True) & (df.obv_pc >= 2)) sellsignals = (((df.ema12ltema26co == True) & (df.macdltsignal == True)) | ((df.ema12gtema26 == True) & ((df.macdltsignal == True) & (df.obv_pc < 0)))) df_signals = df[(buysignals) | (sellsignals)] diff = 0 action = '' last_action = '' last_close = 0 total_diff = 0 events = [] # iterate through the DataFrame buy and sell signals for index, row in df_signals.iterrows(): df_orders = account.getOrders() # determine if the df_signal is a buy or sell, just a high level check if row['ema12gtema26'] == True and row['macdgtsignal'] == True: action = 'buy' elif row['ema12ltema26co'] == True and row['macdltsignal'] == True: # ignore sell if close is lower than previous buy if len(df_orders) > 0 and df_orders.iloc[[ -1 ]]['action'].values[0] == 'buy' and row['close'] > df_orders.iloc[[ -1 ]]['price'].values[0]: action = 'sell' if action != '' and action != last_action and not ( last_action == '' and action == 'sell'): if last_action != '': if action == 'sell': diff = row['close'] - last_close else: diff = 0.00 if action == 'buy': account.buy(cryptoMarket, fiatMarket, 100, row['close']) elif action == 'sell': account.sell(cryptoMarket, fiatMarket, df_orders.iloc[[-1]]['size'].values[0], row['close']) data_dict = { 'market': market, 'granularity': granularity, 'start': startDate, 'end': endDate, 'action': action, 'index': str(index), 'close': row['close'], 'sma200': row['sma200'], 'ema12': row['ema12'], 'ema26': row['ema26'], 'macd': row['macd'], 'signal': row['signal'], 'ema12gtema26co': row['ema12gtema26co'], 'macdgtsignal': row['macdgtsignal'], 'ema12ltema26co': row['ema12ltema26co'], 'macdltsignal': row['macdltsignal'], 'obv_pc': row['obv_pc'], 'diff': diff } events.append(data_dict) last_action = action last_close = row['close'] total_diff = total_diff + diff # displays the events from the simulation events_df = pd.DataFrame(events) print(events_df) # if the last transation was a buy retrieve open amount addBalance = 0 df_orders = account.getOrders() if len(df_orders) > 0 and df_orders.iloc[[-1 ]]['action'].values[0] == 'buy': # last trade is still open, add to closing balance addBalance = df_orders.iloc[[-1]]['value'].values[0] # displays the orders from the simulation print('') print(df_orders) def truncate(f, n): return math.floor(f * 10**n) / 10**n # if the last transaction was a buy add the open amount to the closing balance result = truncate( round((account.getBalance(fiatMarket) + addBalance) - 1000, 2), 2) print('') print("Opening balance:", 1000) print("Closing balance:", truncate(round(account.getBalance(fiatMarket) + addBalance, 2), 2)) print(" Result:", result) print('') # saves the rendered diagram for the DataFrame (without displaying) tradinggraphs = TradingGraphs(coinbasepro) tradinggraphs.renderBuySellSignalEMA1226MACD( 'experiments/experiment' + str(id) + '_' + str(result) + '.png', True) result_dict = { 'market': market, 'granularity': granularity, 'start': startDate, 'end': endDate, 'open': 1000, 'close': '{:.2f}'.format(round(account.getBalance(fiatMarket) + addBalance, 2)), 'result': result } return result_dict