Example #1
0
    def image_gallery_png(self,
                          ch5,
                          ofile,
                          n_galleries=50,
                          rsfactor=0.4,
                          gsize=100):
        """Resolution of png gallerie can be adjusted by the resampling factor
        (default=0.4). File size is large"""

        for name in sorted(self.data.keys()):
            data = self.data[name]
            if data is None:
                continue
            image = np.array([])
            for objidx, track, coords in data.itertracks(n_galleries):
                pos = ch5.get_position(coords.well, coords.position)
                img = self._load_gallery(pos, objidx, coords.region, gsize)
                img = self._draw_labels(img, track)
                try:
                    image = np.vstack((image, img))
                except ValueError:
                    image = img

            fn = ofile.replace('_gallery.png', '-%s_gallery.png' % name)
            vimage = vigra.RGBImage(image.swapaxes(1, 0))
            vimage = vigra.sampling.resampleImage(vimage, rsfactor)
            vimage.writeImage(fn)
Example #2
0
    def make_gallery(self, grey_subimages=True):
        # n_ch >= 2
        n_ch = len(self._channel.merge_regions)+1
        self.make_target_dir()

        holder = self._channel.get_region(self._channel.regkey)
        for label in holder:
            iname = self.gallery_name(label)
            center = holder[label].oCenterAbs
            gallery = GalleryRGBImage(((n_ch)*self._size, self._size, 3),
                                      dtype=np.uint8, nsub=n_ch)

            for i, (channel, region) in enumerate(self._channel.sub_channels()):
                image = channel.meta_image.image.toArray()
                hexcolor = Colors.channel_hexcolor(channel.strChannelId)
                sholder = channel.get_region(region)
                sample = sholder[label]

                roi, coff = self._i_sub_image(center, image.shape)
                sub_img = self.cut(image, roi)
                gallery.set_sub_image(i, sub_img, hexcolor, grey_subimages)

                # contour in a single sub image
                contour = np.array(sample.crack_contour) - \
                    np.array(sample.oCenterAbs)
                contour += self._size/2 + coff
                gallery.add_contour(i, contour, sample.strHexColor)

            gallery.draw_contour()
            gallery.draw_merge_contour(holder[label].strHexColor)
            vigra.RGBImage(gallery).writeImage(iname)
Example #3
0
def cellImage2display(cellImage,
                      background=None,
                      nodeColor=(0, 0, 255),
                      edgeColor=(255, 0, 0)):
    assert False, "cellImage2display needs to be ported to vigranumpy"
    if hasattr(cellImage, "cellImage"):
        cellImage = cellImage.cellImage
    if hasattr(cellImage, "serialize"):
        cellImage = cellImage.serialize()
    if background is None:
        background = cellImage / 4
    if background.bands() < 3:
        background = vigra.RGBImage(background)
    if background.size() != cellImage.size():
        nbg = vigra.RGBImage(cellImage.size())
        shift = Point2D((cellImage.width() - background.width()) / 2,
                        (cellImage.height() - background.height()) / 2)
        nbg.subImage(Rect2D(shift, background.size())).copyValues(background)
        background = nbg
    return transformImage(
        cellImage, background,
        "\l ci, b: ci %% 4 == 1 ? %r : (ci %% 4 == 2 ? %r : b)" %
        (edgeColor, nodeColor))
Example #4
0
    def make_gallery(self):
        if self._write_tables:
            self.write_center_tables()

        for startid, centers in self.centers.iteritems():
            iname = join(self._outdir, "P%s__T%05d__O%04d__B%02d.png" \
                             %((self.position, )+self._split_nodeid(startid)))
            gallery = GalleryRGBImage(
                ((len(centers)) * self._size, self._size, 3),
                dtype=np.uint8,
                nsub=len(centers))

            for i, (frame, objid, center) in enumerate(centers):
                ifile = join(self._indir,
                             'P%s_T%05d.jpg' % (self.position, frame))
                image = self.load_image(ifile)
                bbox = self._i_sub_image(center, image.shape[:2])
                sub_img = self.cut(image, bbox)
                gallery.set_sub_image(i, sub_img)
            vigra.RGBImage(gallery).writeImage(iname)
Example #5
0
def adjust_images(in_folder, out_folder, max_width, max_height):
    image_names = os.listdir(in_folder)
    image_names = sorted(
        filter(
            lambda x: os.path.splitext(x)[-1].lower() in
            ['.tif', '.tiff', '.png', '.jpg'], image_names))

    ref_img = vigra.RGBImage((max_width, max_height))

    if not os.path.exists(out_folder):
        os.makedirs(out_folder)
        print 'made %s' % out_folder
    for image_name in image_names:
        img = vigra.readImage(os.path.join(in_folder, image_name))
        width = img.shape[0]
        height = img.shape[1]

        if width <= max_width and height <= max_height:
            avg_color = get_corner_color(img, 5)
            ref_img[:, :, :] = avg_color

            offset_x = (max_width - width) / 2
            offset_y = (max_height - height) / 2

            ref_img[offset_x:offset_x + width,
                    offset_y:offset_y + height, :] = img

        elif width > max_width and height > max_height:
            # in this case, we have a crop situation
            offset_x = (width - max_width) / 2
            offset_y = (height - max_height) / 2

            ref_img = img[offset_x:offset_x + max_width,
                          offset_y:offset_y + max_height, :]

        # export
        filename = os.path.join(out_folder, image_name)
        vigra.impex.writeImage(ref_img, filename)

    return
Example #6
0
def test_vigra_compare_rgb():
    a = np.random.randn(3000000).reshape(1000,1000,3).astype(np.float32)
    avigra = vigra.RGBImage(a)

    sigmas = [1.0, 5.0, 10.0]

    for order in [0,1,2]:
        for sigma in sigmas:
            res_ff = ff.gaussian2d(a, order, sigma)
            res_vigra = np.zeros_like(a)

            for c in range(avigra.shape[2]):
                res_vigra[:,:,c] = vigra.filters.gaussianDerivative(a[:,:,c], sigma, [order,order])

            print("gaussian ", order, sigma, np.max(np.abs(res_ff - res_vigra)))

            if not np.allclose(res_ff, res_vigra, atol=1e-6):
                raise Exception("FAIL: ", order, sigma, np.max(np.abs(res_ff - res_vigra)))


    for sigma in sigmas:
        res_ff = ff.gradmag2d(a, sigma)
        res_vigra = vigra.filters.gaussianGradientMagnitude(avigra, sigma, accumulate=False)
        print("gradmag2d ", sigma, np.max(np.abs(res_ff - res_vigra)))

        if not np.allclose(res_ff, res_vigra, atol=1e-6):
            import IPython; IPython.embed()
            raise Exception("FAIL: gradmag2d ", sigma, np.max(np.abs(res_ff - res_vigra)))


    for sigma in sigmas:
        res_ff = ff.laplacian2d(a, sigma)
        res_vigra = vigra.filters.laplacianOfGaussian(avigra, sigma)
        print("laplacian2d ", sigma, np.max(np.abs(res_ff - res_vigra)))

        if not np.allclose(res_ff, res_vigra, atol=1e-6):
            raise Exception("FAIL: laplacian2d ", sigma, np.max(np.abs(res_ff - res_vigra)))

    '''
import fastfilters as ff
import numpy as np
import sys

try:
    import vigra
except ImportError:
    print("WARNING: vigra not available - skipping tests.")
    with open(sys.argv[1], 'w') as f:
        f.write('')
    exit()

a = np.random.randn(3000000).reshape(1000, 1000, 3).astype(np.float32)
avigra = vigra.RGBImage(a)

sigmas = [1.0, 5.0, 10.0]

for order in [0, 1, 2]:
    for sigma in sigmas:
        res_ff = ff.gaussian2d(a, order, sigma)
        res_vigra = np.zeros_like(a)

        for c in range(avigra.shape[2]):
            res_vigra[:, :, c] = vigra.filters.gaussianDerivative(
                a[:, :, c], sigma, [order, order])

        print("gaussian ", order, sigma, np.max(np.abs(res_ff - res_vigra)))

        if not np.allclose(res_ff, res_vigra, atol=1e-6):
            raise Exception("FAIL: ", order, sigma,
                            np.max(np.abs(res_ff - res_vigra)))