Example #1
0
    def __init__(self, configer):
        self.configer = configer

        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.default_boxes = PriorBoxLayer(configer)()
        self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DataLoader(configer)
        self.ssd_priorbox_layer = SSDPriorBoxLayer(configer)
        self.ssd_target_generator = SSDTargetGenerator(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

        self._init_model()
Example #3
0
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DataLoader(configer)
        self.yolo_target_generator = YOLOTargetGenerator(configer)
        self.yolo_detection_layer = YOLODetectionLayer(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

        self._init_model()
Example #4
0
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DataLoader(configer)
        self.roi_sampler = FRROISampler(configer)
        self.rpn_target_generator = RPNTargetAssigner(configer)
        self.fr_priorbox_layer = FRPriorBoxLayer(configer)
        self.fr_roi_generator = FRROIGenerator(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

        self._init_model()
class SingleShotDetectorTest(object):
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DataLoader(configer)
        self.ssd_priorbox_layer = SSDPriorBoxLayer(configer)
        self.ssd_target_generator = SSDTargetGenerator(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = RunnerHelper.load_net(self, self.det_net)
        self.det_net.eval()

    def __test_img(self, image_path, json_path, raw_path, vis_path):
        Log.info('Image Path: {}'.format(image_path))
        img = ImageHelper.read_image(
            image_path,
            tool=self.configer.get('data', 'image_tool'),
            mode=self.configer.get('data', 'input_mode'))
        ori_img_bgr = ImageHelper.get_cv2_bgr(img,
                                              mode=self.configer.get(
                                                  'data', 'input_mode'))

        inputs = self.blob_helper.make_input(img,
                                             input_size=self.configer.get(
                                                 'test', 'input_size'),
                                             scale=1.0)

        with torch.no_grad():
            feat_list, bbox, cls = self.det_net(inputs)

        batch_detections = self.decode(
            bbox, cls,
            self.ssd_priorbox_layer(feat_list,
                                    self.configer.get('test', 'input_size')),
            self.configer, [inputs.size(3), inputs.size(2)])
        json_dict = self.__get_info_tree(
            batch_detections[0], ori_img_bgr,
            [inputs.size(3), inputs.size(2)])

        image_canvas = self.det_parser.draw_bboxes(
            ori_img_bgr.copy(),
            json_dict,
            conf_threshold=self.configer.get('res', 'vis_conf_thre'))
        cv2.imwrite(vis_path, image_canvas)
        cv2.imwrite(raw_path, ori_img_bgr)

        Log.info('Json Path: {}'.format(json_path))
        JsonHelper.save_file(json_dict, json_path)
        return json_dict

    @staticmethod
    def decode(bbox, conf, default_boxes, configer, input_size):
        loc = bbox
        if configer.get('phase') != 'debug':
            conf = F.softmax(conf, dim=-1)

        default_boxes = default_boxes.unsqueeze(0).repeat(loc.size(0), 1,
                                                          1).to(bbox.device)

        variances = [0.1, 0.2]
        wh = torch.exp(loc[:, :, 2:] * variances[1]) * default_boxes[:, :, 2:]
        cxcy = loc[:, :, :2] * variances[
            0] * default_boxes[:, :, 2:] + default_boxes[:, :, :2]
        boxes = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 2)  # [b, 8732,4]

        batch_size, num_priors, _ = boxes.size()
        boxes = boxes.unsqueeze(2).repeat(1, 1,
                                          configer.get('data', 'num_classes'),
                                          1)
        boxes = boxes.contiguous().view(boxes.size(0), -1, 4)

        # clip bounding box
        boxes[:, :, 0::2] = boxes[:, :, 0::2].clamp(min=0,
                                                    max=input_size[0] - 1)
        boxes[:, :, 1::2] = boxes[:, :, 1::2].clamp(min=0,
                                                    max=input_size[1] - 1)

        labels = torch.Tensor([
            i for i in range(configer.get('data', 'num_classes'))
        ]).to(boxes.device)
        labels = labels.view(1, 1, -1,
                             1).repeat(batch_size, num_priors, 1,
                                       1).contiguous().view(batch_size, -1, 1)
        max_conf = conf.contiguous().view(batch_size, -1, 1)

        # max_conf, labels = conf.max(2, keepdim=True)  # [b, 8732,1]
        predictions = torch.cat((boxes, max_conf.float(), labels.float()), 2)
        output = [None for _ in range(len(predictions))]
        for image_i, image_pred in enumerate(predictions):
            ids = labels[image_i].squeeze(1).nonzero().contiguous().view(-1, )
            if ids.numel() == 0:
                continue

            valid_preds = image_pred[ids]
            _, order = valid_preds[:, 4].sort(0, descending=True)
            order = order[:configer.get('nms', 'pre_nms')]
            valid_preds = valid_preds[order]
            valid_preds = valid_preds[
                valid_preds[:, 4] > configer.get('res', 'val_conf_thre')]
            if valid_preds.numel() == 0:
                continue

            valid_preds = DetHelper.cls_nms(
                valid_preds[:, :6],
                labels=valid_preds[:, 5],
                max_threshold=configer.get('nms', 'max_threshold'),
                cls_keep_num=configer.get('res', 'cls_keep_num'))

            _, order = valid_preds[:, 4].sort(0, descending=True)
            order = order[:configer.get('res', 'max_per_image')]
            output[image_i] = valid_preds[order]

        return output

    def __get_info_tree(self, detections, image_raw, input_size):
        height, width, _ = image_raw.shape
        in_width, in_height = input_size
        json_dict = dict()
        object_list = list()
        if detections is not None:
            for x1, y1, x2, y2, conf, cls_pred in detections:
                object_dict = dict()
                xmin = x1.cpu().item() / in_width * width
                ymin = y1.cpu().item() / in_height * height
                xmax = x2.cpu().item() / in_width * width
                ymax = y2.cpu().item() / in_height * height
                object_dict['bbox'] = [xmin, ymin, xmax, ymax]
                object_dict['label'] = int(cls_pred.cpu().item()) - 1
                object_dict['score'] = float('%.2f' % conf.cpu().item())

                object_list.append(object_dict)

        json_dict['objects'] = object_list

        return json_dict

    def debug(self, vis_dir):
        count = 0
        for i, data_dict in enumerate(self.det_data_loader.get_trainloader()):
            inputs = data_dict['img']
            batch_gt_bboxes = data_dict['bboxes']
            batch_gt_labels = data_dict['labels']
            input_size = [inputs.size(3), inputs.size(2)]
            feat_list = list()
            for stride in self.configer.get('network', 'stride_list'):
                feat_list.append(
                    torch.zeros((inputs.size(0), 1, input_size[1] // stride,
                                 input_size[0] // stride)))

            bboxes, labels = self.ssd_target_generator(feat_list,
                                                       batch_gt_bboxes,
                                                       batch_gt_labels,
                                                       input_size)
            eye_matrix = torch.eye(self.configer.get('data', 'num_classes'))
            labels_target = eye_matrix[labels.view(-1)].view(
                inputs.size(0), -1, self.configer.get('data', 'num_classes'))
            batch_detections = self.decode(
                bboxes, labels_target,
                self.ssd_priorbox_layer(feat_list, input_size), self.configer,
                input_size)
            for j in range(inputs.size(0)):
                count = count + 1
                if count > 20:
                    exit(1)

                ori_img_bgr = self.blob_helper.tensor2bgr(inputs[j])

                self.det_visualizer.vis_default_bboxes(
                    ori_img_bgr,
                    self.ssd_priorbox_layer(feat_list, input_size), labels[j])
                json_dict = self.__get_info_tree(batch_detections[j],
                                                 ori_img_bgr, input_size)
                image_canvas = self.det_parser.draw_bboxes(
                    ori_img_bgr.copy(),
                    json_dict,
                    conf_threshold=self.configer.get('res', 'vis_conf_thre'))

                cv2.imwrite(
                    os.path.join(vis_dir, '{}_{}_vis.png'.format(i, j)),
                    image_canvas)
                cv2.imshow('main', image_canvas)
                cv2.waitKey()
Example #6
0
class FastRCNNTest(object):
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.roi_sampler = FRRoiSampleLayer(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.rpn_target_generator = RPNTargetGenerator(configer)
        self.fr_priorbox_layer = FRPriorBoxLayer(configer)
        self.fr_roi_generator = FRRoiGenerator(configer)
        self.data_transformer = DataTransformer(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)
        self.det_net.eval()

    def __test_img(self, image_path, json_path, raw_path, vis_path):
        Log.info('Image Path: {}'.format(image_path))
        img = ImageHelper.read_image(
            image_path,
            tool=self.configer.get('data', 'image_tool'),
            mode=self.configer.get('data', 'input_mode'))
        ori_img_bgr = ImageHelper.get_cv2_bgr(img,
                                              mode=self.configer.get(
                                                  'data', 'input_mode'))
        img, scale = BoundResize()(img)
        inputs = self.blob_helper.make_input(img, scale=1.0)
        with torch.no_grad():
            # Forward pass.
            test_group = self.det_net(inputs, scale)

            test_indices_and_rois, test_roi_locs, test_roi_scores, test_rois_num = test_group

        batch_detections = self.decode(test_roi_locs, test_roi_scores,
                                       test_indices_and_rois,
                                       test_rois_num, self.configer,
                                       ImageHelper.get_size(img))
        json_dict = self.__get_info_tree(batch_detections[0],
                                         ori_img_bgr,
                                         scale=scale)

        image_canvas = self.det_parser.draw_bboxes(
            ori_img_bgr.copy(),
            json_dict,
            conf_threshold=self.configer.get('vis', 'conf_threshold'))
        cv2.imwrite(vis_path, image_canvas)
        cv2.imwrite(raw_path, ori_img_bgr)

        Log.info('Json Path: {}'.format(json_path))
        JsonHelper.save_file(json_dict, json_path)
        return json_dict

    @staticmethod
    def decode(roi_locs, roi_scores, indices_and_rois, test_rois_num, configer,
               input_size):
        roi_locs = roi_locs.cpu()
        roi_scores = roi_scores.cpu()
        indices_and_rois = indices_and_rois.cpu()
        num_classes = configer.get('data', 'num_classes')
        mean = torch.Tensor(configer.get(
            'roi', 'loc_normalize_mean')).repeat(num_classes)[None]
        std = torch.Tensor(configer.get(
            'roi', 'loc_normalize_std')).repeat(num_classes)[None]
        mean = mean.to(roi_locs.device)
        std = std.to(roi_locs.device)

        roi_locs = (roi_locs * std + mean)
        roi_locs = roi_locs.contiguous().view(-1, num_classes, 4)
        # roi_locs = roi_locs[:,:, [1, 0, 3, 2]]

        rois = indices_and_rois[:, 1:]
        rois = rois.contiguous().view(-1, 1, 4).expand_as(roi_locs)
        wh = torch.exp(roi_locs[:, :, 2:]) * (rois[:, :, 2:] - rois[:, :, :2])
        cxcy = roi_locs[:, :, :2] * (rois[:, :, 2:] - rois[:, :, :2]) + (
            rois[:, :, :2] + rois[:, :, 2:]) / 2
        dst_bbox = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 2)  # [b, 8732,4]

        # clip bounding box
        dst_bbox[:, :, 0::2] = (dst_bbox[:, :,
                                         0::2]).clamp(min=0,
                                                      max=input_size[0] - 1)
        dst_bbox[:, :, 1::2] = (dst_bbox[:, :,
                                         1::2]).clamp(min=0,
                                                      max=input_size[1] - 1)

        if configer.get('phase') != 'debug':
            cls_prob = F.softmax(roi_scores, dim=1)
        else:
            cls_prob = roi_scores

        cls_label = torch.LongTensor([i for i in range(num_classes)])\
            .contiguous().view(1, num_classes).repeat(indices_and_rois.size(0), 1)

        output = [None for _ in range(test_rois_num.size(0))]
        start_index = 0
        for i in range(test_rois_num.size(0)):
            # batch_index = (indices_and_rois[:, 0] == i).nonzero().contiguous().view(-1,)
            # tmp_dst_bbox = dst_bbox[batch_index]
            # tmp_cls_prob = cls_prob[batch_index]
            # tmp_cls_label = cls_label[batch_index]
            tmp_dst_bbox = dst_bbox[start_index:start_index + test_rois_num[i]]
            tmp_cls_prob = cls_prob[start_index:start_index + test_rois_num[i]]
            tmp_cls_label = cls_label[start_index:start_index +
                                      test_rois_num[i]]
            start_index += test_rois_num[i]

            mask = (tmp_cls_prob > configer.get(
                'vis', 'conf_threshold')) & (tmp_cls_label > 0)

            tmp_dst_bbox = tmp_dst_bbox[mask].contiguous().view(-1, 4)
            if tmp_dst_bbox.numel() == 0:
                continue

            tmp_cls_prob = tmp_cls_prob[mask].contiguous().view(
                -1, ).unsqueeze(1)
            tmp_cls_label = tmp_cls_label[mask].contiguous().view(
                -1, ).unsqueeze(1)

            valid_preds = torch.cat(
                (tmp_dst_bbox, tmp_cls_prob.float(), tmp_cls_label.float()), 1)

            keep = DetHelper.cls_nms(valid_preds[:, :4],
                                     scores=valid_preds[:, 4],
                                     labels=valid_preds[:, 5],
                                     nms_threshold=configer.get(
                                         'nms', 'overlap_threshold'),
                                     iou_mode=configer.get('nms', 'mode'))

            output[i] = valid_preds[keep]

        return output

    def __make_tensor(self, gt_bboxes, gt_labels):
        len_arr = [gt_labels[i].numel() for i in range(len(gt_bboxes))]
        batch_maxlen = max(max(len_arr), 1)
        target_bboxes = torch.zeros((len(gt_bboxes), batch_maxlen, 4)).float()
        target_labels = torch.zeros((len(gt_bboxes), batch_maxlen)).long()
        for i in range(len(gt_bboxes)):
            target_bboxes[i, :len_arr[i], :] = gt_bboxes[i]
            target_labels[i, :len_arr[i]] = gt_labels[i]

        target_bboxes_num = torch.Tensor(len_arr).long()
        return target_bboxes, target_bboxes_num, target_labels

    def __get_info_tree(self, detections, image_raw, scale=1.0):
        height, width, _ = image_raw.shape
        json_dict = dict()
        object_list = list()
        if detections is not None:
            for x1, y1, x2, y2, conf, cls_pred in detections:
                object_dict = dict()
                xmin = min(x1.cpu().item() / scale, width - 1)
                ymin = min(y1.cpu().item() / scale, height - 1)
                xmax = min(x2.cpu().item() / scale, width - 1)
                ymax = min(y2.cpu().item() / scale, height - 1)
                object_dict['bbox'] = [xmin, ymin, xmax, ymax]
                object_dict['label'] = int(cls_pred.cpu().item()) - 1
                object_dict['score'] = float('%.2f' % conf.cpu().item())

                object_list.append(object_dict)

        json_dict['objects'] = object_list

        return json_dict

    def test(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'val/results/det',
                                self.configer.get('dataset'))

        test_img = self.configer.get('test_img')
        test_dir = self.configer.get('test_dir')
        if test_img is None and test_dir is None:
            Log.error('test_img & test_dir not exists.')
            exit(1)

        if test_img is not None and test_dir is not None:
            Log.error('Either test_img or test_dir.')
            exit(1)

        if test_img is not None:
            base_dir = os.path.join(base_dir, 'test_img')
            filename = test_img.rstrip().split('/')[-1]
            json_path = os.path.join(
                base_dir, 'json',
                '{}.json'.format('.'.join(filename.split('.')[:-1])))
            raw_path = os.path.join(base_dir, 'raw', filename)
            vis_path = os.path.join(
                base_dir, 'vis',
                '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
            FileHelper.make_dirs(json_path, is_file=True)
            FileHelper.make_dirs(raw_path, is_file=True)
            FileHelper.make_dirs(vis_path, is_file=True)
            self.__test_img(test_img, json_path, raw_path, vis_path)

        else:
            base_dir = os.path.join(base_dir, 'test_dir',
                                    test_dir.rstrip('/').split('/')[-1])
            FileHelper.make_dirs(base_dir)

            for filename in FileHelper.list_dir(test_dir):
                image_path = os.path.join(test_dir, filename)
                json_path = os.path.join(
                    base_dir, 'json',
                    '{}.json'.format('.'.join(filename.split('.')[:-1])))
                raw_path = os.path.join(base_dir, 'raw', filename)
                vis_path = os.path.join(
                    base_dir, 'vis',
                    '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
                FileHelper.make_dirs(json_path, is_file=True)
                FileHelper.make_dirs(raw_path, is_file=True)
                FileHelper.make_dirs(vis_path, is_file=True)

                self.__test_img(image_path, json_path, raw_path, vis_path)

    def debug(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'vis/results/det',
                                self.configer.get('dataset'), 'debug')

        if not os.path.exists(base_dir):
            os.makedirs(base_dir)

        count = 0
        for i, data_dict in enumerate(self.det_data_loader.get_trainloader()):
            img_scale = data_dict['imgscale']
            inputs = data_dict['img']
            batch_gt_bboxes = data_dict['bboxes']
            # batch_gt_bboxes = ResizeBoxes()(inputs, data_dict['bboxes'])
            batch_gt_labels = data_dict['labels']

            input_size = [inputs.size(3), inputs.size(2)]
            feat_list = list()
            for stride in self.configer.get('rpn', 'stride_list'):
                feat_list.append(
                    torch.zeros((inputs.size(0), 1, input_size[1] // stride,
                                 input_size[0] // stride)))

            gt_rpn_locs, gt_rpn_labels = self.rpn_target_generator(
                feat_list, batch_gt_bboxes, input_size)
            eye_matrix = torch.eye(2)
            gt_rpn_labels[gt_rpn_labels == -1] = 0
            gt_rpn_scores = eye_matrix[gt_rpn_labels.view(-1)].view(
                inputs.size(0), -1, 2)
            test_indices_and_rois, _ = self.fr_roi_generator(
                feat_list, gt_rpn_locs, gt_rpn_scores,
                self.configer.get('rpn', 'n_test_pre_nms'),
                self.configer.get('rpn', 'n_test_post_nms'), input_size,
                img_scale)

            gt_bboxes, gt_nums, gt_labels = self.__make_tensor(
                batch_gt_bboxes, batch_gt_labels)
            sample_rois, gt_roi_locs, gt_roi_labels = self.roi_sampler(
                test_indices_and_rois, gt_bboxes, gt_nums, gt_labels,
                input_size)

            self.det_visualizer.vis_rois(inputs,
                                         sample_rois[gt_roi_labels > 0])
            gt_cls_roi_locs = torch.zeros(
                (gt_roi_locs.size(0), self.configer.get('data',
                                                        'num_classes'), 4))
            gt_cls_roi_locs[torch.arange(0, sample_rois.size(0)).long(),
                            gt_roi_labels.long()] = gt_roi_locs
            gt_cls_roi_locs = gt_cls_roi_locs.contiguous().view(
                -1, 4 * self.configer.get('data', 'num_classes'))
            eye_matrix = torch.eye(self.configer.get('data', 'num_classes'))

            gt_roi_scores = eye_matrix[gt_roi_labels.view(-1)].view(
                gt_roi_labels.size(0),
                self.configer.get('data', 'num_classes'))
            test_rois_num = torch.zeros((len(gt_bboxes), )).long()
            for batch_id in range(len(gt_bboxes)):
                batch_index = (
                    sample_rois[:, 0] == batch_id).nonzero().contiguous().view(
                        -1, )
                test_rois_num[batch_id] = batch_index.numel()

            batch_detections = FastRCNNTest.decode(gt_cls_roi_locs,
                                                   gt_roi_scores, sample_rois,
                                                   test_rois_num,
                                                   self.configer, input_size)

            for j in range(inputs.size(0)):
                count = count + 1
                if count > 20:
                    exit(1)

                ori_img_bgr = self.blob_helper.tensor2bgr(inputs[j])

                self.det_visualizer.vis_default_bboxes(
                    ori_img_bgr, self.fr_priorbox_layer(feat_list, input_size),
                    gt_rpn_labels[j])
                json_dict = self.__get_info_tree(batch_detections[j],
                                                 ori_img_bgr)
                image_canvas = self.det_parser.draw_bboxes(
                    ori_img_bgr.copy(),
                    json_dict,
                    conf_threshold=self.configer.get('vis', 'conf_threshold'))

                cv2.imwrite(
                    os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)),
                    image_canvas)
                cv2.imshow('main', image_canvas)
                cv2.waitKey()
Example #7
0
class FastRCNNTest(object):
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DataLoader(configer)
        self.roi_sampler = FRROISampler(configer)
        self.rpn_target_generator = RPNTargetAssigner(configer)
        self.fr_priorbox_layer = FRPriorBoxLayer(configer)
        self.fr_roi_generator = FRROIGenerator(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = RunnerHelper.load_net(self, self.det_net)
        self.det_net.eval()

    def __test_img(self, image_path, json_path, raw_path, vis_path):
        Log.info('Image Path: {}'.format(image_path))
        image = ImageHelper.read_image(
            image_path,
            tool=self.configer.get('data', 'image_tool'),
            mode=self.configer.get('data', 'input_mode'))
        ori_img_bgr = ImageHelper.get_cv2_bgr(image,
                                              mode=self.configer.get(
                                                  'data', 'input_mode'))
        width, height = ImageHelper.get_size(image)
        scale1 = self.configer.get('test', 'resize_bound')[0] / min(
            width, height)
        scale2 = self.configer.get('test', 'resize_bound')[1] / max(
            width, height)
        scale = min(scale1, scale2)
        inputs = self.blob_helper.make_input(image, scale=scale)
        b, c, h, w = inputs.size()
        border_wh = [w, h]
        if self.configer.exists('test', 'fit_stride'):
            stride = self.configer.get('test', 'fit_stride')

            pad_w = 0 if (w % stride == 0) else stride - (w % stride)  # right
            pad_h = 0 if (h % stride == 0) else stride - (h % stride)  # down

            expand_image = torch.zeros(
                (b, c, h + pad_h, w + pad_w)).to(inputs.device)
            expand_image[:, :, 0:h, 0:w] = inputs
            inputs = expand_image

        data_dict = dict(
            img=inputs,
            meta=DataContainer([[
                dict(ori_img_size=ImageHelper.get_size(ori_img_bgr),
                     aug_img_size=border_wh,
                     img_scale=scale,
                     input_size=[inputs.size(3),
                                 inputs.size(2)])
            ]],
                               cpu_only=True))

        with torch.no_grad():
            # Forward pass.
            test_group = self.det_net(data_dict)

            test_indices_and_rois, test_roi_locs, test_roi_scores, test_rois_num = test_group

        batch_detections = self.decode(test_roi_locs, test_roi_scores,
                                       test_indices_and_rois, test_rois_num,
                                       self.configer,
                                       DCHelper.tolist(data_dict['meta']))
        json_dict = self.__get_info_tree(batch_detections[0],
                                         ori_img_bgr,
                                         scale=scale)

        image_canvas = self.det_parser.draw_bboxes(
            ori_img_bgr.copy(),
            json_dict,
            conf_threshold=self.configer.get('res', 'vis_conf_thre'))
        cv2.imwrite(vis_path, image_canvas)
        cv2.imwrite(raw_path, ori_img_bgr)

        Log.info('Json Path: {}'.format(json_path))
        JsonHelper.save_file(json_dict, json_path)
        return json_dict

    @staticmethod
    def decode(roi_locs, roi_scores, indices_and_rois, test_rois_num, configer,
               metas):
        indices_and_rois = indices_and_rois
        num_classes = configer.get('data', 'num_classes')
        mean = torch.Tensor(configer.get(
            'roi', 'loc_normalize_mean')).repeat(num_classes)[None]
        std = torch.Tensor(configer.get(
            'roi', 'loc_normalize_std')).repeat(num_classes)[None]
        mean = mean.to(roi_locs.device)
        std = std.to(roi_locs.device)

        roi_locs = (roi_locs * std + mean)
        roi_locs = roi_locs.contiguous().view(-1, num_classes, 4)
        # roi_locs = roi_locs[:,:, [1, 0, 3, 2]]

        rois = indices_and_rois[:, 1:]
        rois = rois.contiguous().view(-1, 1, 4).expand_as(roi_locs)
        wh = torch.exp(roi_locs[:, :, 2:]) * (rois[:, :, 2:] - rois[:, :, :2])
        cxcy = roi_locs[:, :, :2] * (rois[:, :, 2:] - rois[:, :, :2]) + (
            rois[:, :, :2] + rois[:, :, 2:]) / 2
        dst_bbox = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 2)  # [b, 8732,4]

        if configer.get('phase') != 'debug':
            cls_prob = F.softmax(roi_scores, dim=1)
        else:
            cls_prob = roi_scores

        cls_label = torch.LongTensor([i for i in range(num_classes)])\
            .contiguous().view(1, num_classes).repeat(indices_and_rois.size(0), 1).to(roi_locs.device)

        output = [None for _ in range(test_rois_num.size(0))]
        start_index = 0
        for i in range(test_rois_num.size(0)):
            # batch_index = (indices_and_rois[:, 0] == i).nonzero().contiguous().view(-1,)
            # tmp_dst_bbox = dst_bbox[batch_index]
            # tmp_cls_prob = cls_prob[batch_index]
            # tmp_cls_label = cls_label[batch_index]
            tmp_dst_bbox = dst_bbox[start_index:start_index + test_rois_num[i]]
            # clip bounding box
            tmp_dst_bbox[:, :, 0::2] = tmp_dst_bbox[:, :, 0::2].clamp(
                min=0, max=metas[i]['border_size'][0] - 1)
            tmp_dst_bbox[:, :, 1::2] = tmp_dst_bbox[:, :, 1::2].clamp(
                min=0, max=metas[i]['border_size'][1] - 1)

            tmp_cls_prob = cls_prob[start_index:start_index + test_rois_num[i]]
            tmp_cls_label = cls_label[start_index:start_index +
                                      test_rois_num[i]]
            start_index += test_rois_num[i]

            mask = (tmp_cls_prob > configer.get(
                'res', 'val_conf_thre')) & (tmp_cls_label > 0)

            tmp_dst_bbox = tmp_dst_bbox[mask].contiguous().view(-1, 4)
            if tmp_dst_bbox.numel() == 0:
                continue

            tmp_cls_prob = tmp_cls_prob[mask].contiguous().view(
                -1, ).unsqueeze(1)
            tmp_cls_label = tmp_cls_label[mask].contiguous().view(
                -1, ).unsqueeze(1)

            valid_preds = torch.cat(
                (tmp_dst_bbox, tmp_cls_prob.float(), tmp_cls_label.float()), 1)

            output[i] = DetHelper.cls_nms(valid_preds,
                                          labels=valid_preds[:, 5],
                                          max_threshold=configer.get(
                                              'nms', 'max_threshold'))

        return output

    def __get_info_tree(self, detections, image_raw, scale=1.0):
        height, width, _ = image_raw.shape
        json_dict = dict()
        object_list = list()
        if detections is not None:
            for x1, y1, x2, y2, conf, cls_pred in detections:
                object_dict = dict()
                xmin = min(x1.cpu().item() / scale, width - 1)
                ymin = min(y1.cpu().item() / scale, height - 1)
                xmax = min(x2.cpu().item() / scale, width - 1)
                ymax = min(y2.cpu().item() / scale, height - 1)
                object_dict['bbox'] = [xmin, ymin, xmax, ymax]
                object_dict['label'] = int(cls_pred.cpu().item()) - 1
                object_dict['score'] = float('%.2f' % conf.cpu().item())

                object_list.append(object_dict)

        json_dict['objects'] = object_list

        return json_dict

    def debug(self, vis_dir):
        count = 0
        for i, data_dict in enumerate(self.det_data_loader.get_trainloader()):
            feat_list = list()
            input_size = data_dict['meta'][0]['input_size']
            for stride in self.configer.get('rpn', 'stride_list'):
                feat_list.append(
                    torch.zeros(
                        (data_dict['img'].size(0), 1, input_size[1] // stride,
                         input_size[0] // stride)))

            gt_rpn_locs, gt_rpn_labels = self.rpn_target_generator(
                feat_list, data_dict['bboxes'], data_dict['meta'])
            eye_matrix = torch.eye(2)
            gt_rpn_labels[gt_rpn_labels == -1] = 0
            gt_rpn_scores = eye_matrix[gt_rpn_labels.view(-1)].view(
                data_dict['img'].size(0), -1, 2)
            test_indices_and_rois, _ = self.fr_roi_generator(
                feat_list, gt_rpn_locs, gt_rpn_scores,
                self.configer.get('rpn', 'n_test_pre_nms'),
                self.configer.get('rpn', 'n_test_post_nms'), data_dict['meta'])

            sample_rois, gt_roi_locs, gt_roi_labels = self.roi_sampler(
                test_indices_and_rois, data_dict['bboxes'],
                data_dict['labels'], data_dict['meta'])

            self.det_visualizer.vis_rois(data_dict['img'],
                                         sample_rois[gt_roi_labels > 0])
            gt_cls_roi_locs = torch.zeros(
                (gt_roi_locs.size(0), self.configer.get('data',
                                                        'num_classes'), 4))
            gt_cls_roi_locs[torch.arange(0, sample_rois.size(0)).long(),
                            gt_roi_labels.long()] = gt_roi_locs
            gt_cls_roi_locs = gt_cls_roi_locs.contiguous().view(
                -1, 4 * self.configer.get('data', 'num_classes'))
            eye_matrix = torch.eye(self.configer.get('data', 'num_classes'))

            gt_roi_scores = eye_matrix[gt_roi_labels.view(-1)].view(
                gt_roi_labels.size(0),
                self.configer.get('data', 'num_classes'))
            test_rois_num = torch.zeros((len(data_dict['bboxes']), )).long()
            for batch_id in range(len(data_dict['bboxes'])):
                batch_index = (
                    sample_rois[:, 0] == batch_id).nonzero().contiguous().view(
                        -1, )
                test_rois_num[batch_id] = batch_index.numel()

            batch_detections = FastRCNNTest.decode(gt_cls_roi_locs,
                                                   gt_roi_scores, sample_rois,
                                                   test_rois_num,
                                                   self.configer,
                                                   data_dict['meta'])

            for j in range(data_dict['img'].size(0)):
                count = count + 1
                if count > 20:
                    exit(1)

                ori_img_bgr = self.blob_helper.tensor2bgr(data_dict['img'][j])

                self.det_visualizer.vis_default_bboxes(
                    ori_img_bgr, self.fr_priorbox_layer(feat_list, input_size),
                    gt_rpn_labels[j])
                json_dict = self.__get_info_tree(batch_detections[j],
                                                 ori_img_bgr)
                image_canvas = self.det_parser.draw_bboxes(
                    ori_img_bgr.copy(),
                    json_dict,
                    conf_threshold=self.configer.get('res', 'vis_conf_thre'))

                cv2.imwrite(
                    os.path.join(vis_dir, '{}_{}_vis.png'.format(i, j)),
                    image_canvas)
                cv2.imshow('main', image_canvas)
                cv2.waitKey()
Example #8
0
class YOLOv3Test(object):
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DataLoader(configer)
        self.yolo_target_generator = YOLOTargetGenerator(configer)
        self.yolo_detection_layer = YOLODetectionLayer(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = RunnerHelper.load_net(self, self.det_net)
        self.det_net.eval()

    def __test_img(self, image_path, json_path, raw_path, vis_path):
        Log.info('Image Path: {}'.format(image_path))
        img = ImageHelper.read_image(
            image_path,
            tool=self.configer.get('data', 'image_tool'),
            mode=self.configer.get('data', 'input_mode'))
        ori_img_bgr = ImageHelper.get_cv2_bgr(img,
                                              mode=self.configer.get(
                                                  'data', 'input_mode'))

        inputs = self.blob_helper.make_input(img,
                                             input_size=self.configer.get(
                                                 'data', 'input_size'),
                                             scale=1.0)

        with torch.no_grad():
            inputs = inputs.unsqueeze(0).to(self.device)
            _, _, detections = self.det_net(inputs)

        batch_detections = self.decode(detections, self.configer)
        json_dict = self.__get_info_tree(batch_detections[0], ori_img_bgr)

        image_canvas = self.det_parser.draw_bboxes(
            ori_img_bgr.copy(),
            json_dict,
            conf_threshold=self.configer.get('res', 'vis_conf_thre'))
        ImageHelper.save(ori_img_bgr, raw_path)
        ImageHelper.save(image_canvas, vis_path)

        Log.info('Json Path: {}'.format(json_path))
        JsonHelper.save_file(json_dict, json_path)
        return json_dict

    @staticmethod
    def decode(batch_pred_bboxes, configer, input_size):
        box_corner = batch_pred_bboxes.new(batch_pred_bboxes.shape)
        box_corner[:, :,
                   0] = batch_pred_bboxes[:, :,
                                          0] - batch_pred_bboxes[:, :, 2] / 2
        box_corner[:, :,
                   1] = batch_pred_bboxes[:, :,
                                          1] - batch_pred_bboxes[:, :, 3] / 2
        box_corner[:, :,
                   2] = batch_pred_bboxes[:, :,
                                          0] + batch_pred_bboxes[:, :, 2] / 2
        box_corner[:, :,
                   3] = batch_pred_bboxes[:, :,
                                          1] + batch_pred_bboxes[:, :, 3] / 2

        # clip bounding box
        box_corner[:, :, 0::2] = box_corner[:, :, 0::2].clamp(min=0, max=1.0)
        box_corner[:, :, 1::2] = box_corner[:, :, 1::2].clamp(min=0, max=1.0)

        batch_pred_bboxes[:, :, :4] = box_corner[:, :, :4]
        batch_pred_bboxes[:, :, 0::2] *= input_size[0]
        batch_pred_bboxes[:, :, 1::2] *= input_size[1]
        output = [None for _ in range(len(batch_pred_bboxes))]
        for image_i, image_pred in enumerate(batch_pred_bboxes):
            # Filter out confidence scores below threshold
            conf_mask = (image_pred[:, 4] > configer.get(
                'res', 'val_conf_thre')).squeeze()
            image_pred = image_pred[conf_mask]
            # If none are remaining => process next image
            if image_pred.numel() == 0:
                continue

            # Get score and class with highest confidence
            class_conf, class_pred = torch.max(
                image_pred[:, 5:5 + configer.get('data', 'num_classes')],
                1,
                keepdim=True)
            # Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
            detections = torch.cat(
                (image_pred[:, :5], class_conf.float(), class_pred.float()), 1)
            output[image_i] = DetHelper.cls_nms(detections,
                                                labels=class_pred.squeeze(1),
                                                max_threshold=configer.get(
                                                    'nms', 'max_threshold'))

        return output

    def __get_info_tree(self, detections, image_raw, input_size):
        height, width, _ = image_raw.shape
        json_dict = dict()
        object_list = list()
        if detections is not None:
            for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                object_dict = dict()
                xmin = x1.cpu().item() / input_size[0] * width
                ymin = y1.cpu().item() / input_size[1] * height
                xmax = x2.cpu().item() / input_size[0] * width
                ymax = y2.cpu().item() / input_size[1] * height
                object_dict['bbox'] = [xmin, ymin, xmax, ymax]
                object_dict['label'] = int(cls_pred.cpu().item())
                object_dict['score'] = float('%.2f' % conf.cpu().item())

                object_list.append(object_dict)

        json_dict['objects'] = object_list

        return json_dict

    def debug(self, vis_dir):
        count = 0
        for i, data_dict in enumerate(self.det_data_loader.get_trainloader()):
            inputs = data_dict['img']
            batch_gt_bboxes = data_dict['bboxes']
            batch_gt_labels = data_dict['labels']
            input_size = [inputs.size(3), inputs.size(2)]
            feat_list = list()
            for stride in self.configer.get('network', 'stride_list'):
                feat_list.append(
                    torch.zeros((inputs.size(0), 1, input_size[1] // stride,
                                 input_size[0] // stride)))

            targets, _, _ = self.yolo_target_generator(feat_list,
                                                       batch_gt_bboxes,
                                                       batch_gt_labels,
                                                       input_size)
            targets = targets.to(self.device)
            anchors_list = self.configer.get('gt', 'anchors_list')
            output_list = list()
            be_c = 0
            for f_index, anchors in enumerate(anchors_list):
                feat_stride = self.configer.get('network',
                                                'stride_list')[f_index]
                fm_size = [
                    int(round(border / feat_stride)) for border in input_size
                ]
                num_c = len(anchors) * fm_size[0] * fm_size[1]
                output_list.append(
                    targets[:, be_c:be_c + num_c].contiguous().view(
                        targets.size(0), len(anchors), fm_size[1], fm_size[0],
                        -1).permute(0, 1, 4, 2, 3).contiguous().view(
                            targets.size(0), -1, fm_size[1], fm_size[0]))

                be_c += num_c

            batch_detections = self.decode(
                self.yolo_detection_layer(output_list)[2], self.configer,
                input_size)

            for j in range(inputs.size(0)):
                count = count + 1
                if count > 20:
                    exit(1)

                ori_img_bgr = self.blob_helper.tensor2bgr(inputs[j])

                json_dict = self.__get_info_tree(batch_detections[j],
                                                 ori_img_bgr, input_size)

                image_canvas = self.det_parser.draw_bboxes(
                    ori_img_bgr.copy(),
                    json_dict,
                    conf_threshold=self.configer.get('vis', 'obj_threshold'))

                cv2.imwrite(
                    os.path.join(vis_dir, '{}_{}_vis.png'.format(i, j)),
                    image_canvas)
                cv2.imshow('main', image_canvas)
                cv2.waitKey()
Example #9
0
class SingleShotDetectorTest(object):
    def __init__(self, configer):
        self.configer = configer

        self.det_visualizer = DetVisualizer(configer)
        self.det_parser = DetParser(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.default_boxes = PriorBoxLayer(configer)()
        self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda')
        self.det_net = None

    def init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)
        self.det_net.eval()

    def __test_img(self, image_path, json_path, raw_path, vis_path):
        Log.info('Image Path: {}'.format(image_path))
        ori_img_rgb = ImageHelper.img2np(ImageHelper.pil_open_rgb(image_path))
        ori_img_bgr = ImageHelper.rgb2bgr(ori_img_rgb)
        inputs = ImageHelper.resize(ori_img_rgb, tuple(self.configer.get('data', 'input_size')), Image.CUBIC)
        inputs = ToTensor()(inputs)
        inputs = Normalize(mean=self.configer.get('trans_params', 'mean'),
                           std=self.configer.get('trans_params', 'std'))(inputs)

        with torch.no_grad():
            inputs = inputs.unsqueeze(0).to(self.device)
            bbox, cls = self.det_net(inputs)

        bbox = bbox.cpu().data.squeeze(0)
        cls = F.softmax(cls.cpu().squeeze(0), dim=-1).data
        boxes, lbls, scores = self.__decode(bbox, cls)
        json_dict = self.__get_info_tree(boxes, lbls, scores, ori_img_rgb)

        image_canvas = self.det_parser.draw_bboxes(ori_img_bgr.copy(),
                                                   json_dict,
                                                   conf_threshold=self.configer.get('vis', 'conf_threshold'))
        cv2.imwrite(vis_path, image_canvas)
        cv2.imwrite(raw_path, ori_img_bgr)

        Log.info('Json Path: {}'.format(json_path))
        JsonHelper.save_file(json_dict, json_path)
        return json_dict

    def __nms(self, bboxes, scores, mode='union'):
        """Non maximum suppression.

        Args:
          bboxes(tensor): bounding boxes, sized [N,4].
          scores(tensor): bbox scores, sized [N,].
          threshold(float): overlap threshold.
          mode(str): 'union' or 'min'.

        Returns:
          keep(tensor): selected indices.

        Ref:
          https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py
        """

        x1 = bboxes[:, 0]
        y1 = bboxes[:, 1]
        x2 = bboxes[:, 2]
        y2 = bboxes[:, 3]

        areas = (x2 - x1) * (y2 - y1)
        _, order = scores.sort(0, descending=True)

        keep = []
        while order.numel() > 0:
            i = order[0]
            keep.append(i)

            if order.numel() == 1:
                break

            xx1 = x1[order[1:]].clamp(min=x1[i])
            yy1 = y1[order[1:]].clamp(min=y1[i])
            xx2 = x2[order[1:]].clamp(max=x2[i])
            yy2 = y2[order[1:]].clamp(max=y2[i])

            w = (xx2-xx1).clamp(min=0)
            h = (yy2-yy1).clamp(min=0)
            inter = w*h

            if self.configer.get('nms', 'mode') == 'union':
                ovr = inter / (areas[i] + areas[order[1:]] - inter)
            elif self.configer.get('nms', 'mode') == 'min':
                ovr = inter / areas[order[1:]].clamp(max=areas[i])
            else:
                raise TypeError('Unknown nms mode: %s.' % mode)

            ids = (ovr <= self.configer.get('nms', 'overlap_threshold')).nonzero().squeeze()
            if ids.numel() == 0:
                break

            order = order[ids + 1]

        return torch.LongTensor(keep)

    def __decode(self, loc, conf):
        """Transform predicted loc/conf back to real bbox locations and class labels.

        Args:
          loc: (tensor) predicted loc, sized [8732, 4].
          conf: (tensor) predicted conf, sized [8732, 21].

        Returns:
          boxes: (tensor) bbox locations, sized [#obj, 4].
          labels: (tensor) class labels, sized [#obj,1].

        """
        variances = [0.1, 0.2]
        wh = torch.exp(loc[:, 2:] * variances[1]) * self.default_boxes[:, 2:]
        cxcy = loc[:, :2] * variances[0] * self.default_boxes[:, 2:] + self.default_boxes[:, :2]
        boxes = torch.cat([cxcy - wh / 2, cxcy + wh / 2], 1)  # [8732,4]

        max_conf, labels = conf.max(1)  # [8732,1]
        ids = labels.nonzero()
        tmp = ids.cpu().numpy()

        if tmp.__len__() > 0:
            # print('detected %d objs' % tmp.__len__())
            ids = ids.squeeze(1)  # [#boxes,]
            keep = self.__nms(boxes[ids], max_conf[ids])

            pred_bboxes = boxes[ids][keep].cpu().numpy()
            pred_bboxes = np.clip(pred_bboxes, 0, 1)
            pred_labels = labels[ids][keep].cpu().numpy()
            pred_confs = max_conf[ids][keep].cpu().numpy()

            return pred_bboxes, pred_labels, pred_confs

        else:
            Log.info('None object detected!')
            pred_bboxes = list()
            pred_labels = list()
            pred_confs = list()
            return pred_bboxes, pred_labels, pred_confs

    def __get_info_tree(self, box_list, label_list, conf, image_raw):
        height, width, _ = image_raw.shape
        json_dict = dict()
        object_list = list()
        for bbox, label, cf in zip(box_list, label_list, conf):
            if cf < self.configer.get('vis', 'conf_threshold'):
                continue

            object_dict = dict()
            xmin = bbox[0] * width
            xmax = bbox[2] * width
            ymin = bbox[1] * height
            ymax = bbox[3] * height
            object_dict['bbox'] = [xmin, ymin, xmax, ymax]
            object_dict['label'] = label - 1
            object_dict['score'] = cf

            object_list.append(object_dict)

        json_dict['objects'] = object_list
        return json_dict

    def test(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'val/results/det', self.configer.get('dataset'))

        test_img = self.configer.get('test_img')
        test_dir = self.configer.get('test_dir')
        if test_img is None and test_dir is None:
            Log.error('test_img & test_dir not exists.')
            exit(1)

        if test_img is not None and test_dir is not None:
            Log.error('Either test_img or test_dir.')
            exit(1)

        if test_img is not None:
            base_dir = os.path.join(base_dir, 'test_img')
            filename = test_img.rstrip().split('/')[-1]
            json_path = os.path.join(base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1])))
            raw_path = os.path.join(base_dir, 'raw', filename)
            vis_path = os.path.join(base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
            if not os.path.exists(os.path.dirname(json_path)):
                os.makedirs(os.path.dirname(json_path))

            if not os.path.exists(os.path.dirname(raw_path)):
                os.makedirs(os.path.dirname(raw_path))

            if not os.path.exists(os.path.dirname(vis_path)):
                os.makedirs(os.path.dirname(vis_path))

            self.__test_img(test_img, json_path, raw_path, vis_path)

        else:
            base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1])
            if not os.path.exists(base_dir):
                os.makedirs(base_dir)

            for filename in FileHelper.list_dir(test_dir):
                image_path = os.path.join(test_dir, filename)
                json_path = os.path.join(base_dir, 'json', '{}.json'.format('.'.join(filename.split('.')[:-1])))
                raw_path = os.path.join(base_dir, 'raw', filename)
                vis_path = os.path.join(base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1])))
                if not os.path.exists(os.path.dirname(json_path)):
                    os.makedirs(os.path.dirname(json_path))

                if not os.path.exists(os.path.dirname(raw_path)):
                    os.makedirs(os.path.dirname(raw_path))

                if not os.path.exists(os.path.dirname(vis_path)):
                    os.makedirs(os.path.dirname(vis_path))

                self.__test_img(image_path, json_path, raw_path, vis_path)

    def debug(self):
        base_dir = os.path.join(self.configer.get('project_dir'),
                                'vis/results/det', self.configer.get('dataset'), 'debug')

        if not os.path.exists(base_dir):
            os.makedirs(base_dir)

        val_data_loader = self.det_data_loader.get_valloader()

        count = 0
        for i, (inputs, bboxes, labels) in enumerate(val_data_loader):
            for j in range(inputs.size(0)):
                count = count + 1
                if count > 20:
                    exit(1)

                ori_img_rgb = DeNormalize(mean=self.configer.get('trans_params', 'mean'),
                                          std=self.configer.get('trans_params', 'std'))(inputs[j])
                ori_img_rgb = ori_img_rgb.numpy().transpose(1, 2, 0).astype(np.uint8)
                ori_img_bgr = cv2.cvtColor(ori_img_rgb, cv2.COLOR_RGB2BGR)
                eye_matrix = torch.eye(self.configer.get('data', 'num_classes'))
                labels_target = eye_matrix[labels.view(-1)].view(inputs.size(0), -1,
                                                                 self.configer.get('data', 'num_classes'))
                boxes, lbls, scores = self.__decode(bboxes[j], labels_target[j])
                json_dict = self.__get_info_tree(boxes, lbls, scores, ori_img_rgb)
                image_canvas = self.det_parser.draw_bboxes(ori_img_bgr.copy(),
                                                           json_dict,
                                                           conf_threshold=self.configer.get('vis', 'conf_threshold'))

                cv2.imwrite(os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)), image_canvas)
                cv2.imshow('main', image_canvas)
                cv2.waitKey()