def run(self): folders = how_many_fatherFolder(self.path) for experiemnt in folders: logging.debug("Folder under analysis -> " + str(experiemnt)) second_path = self.path + experiemnt + "/" res = how_many_folder(second_path) num_folder = len(res) logging.debug("Folder to analise -> " + str(num_folder)) for el in res: path_here = second_path + str(el) + "/" names = [] for i in os.listdir(path_here): if os.path.isfile( os.path.join(path_here, i) ) and 'trajectory-generate-aSs-' in i and ".zip" in i: names.append(i) names = sorted_nicely(names) pops = Populations() # find the trajectories ID and Points trajectories = self.read_trajectory_info(path_here + "trajectory.zip") for tra in trajectories: pops.add_population(Population(tra)) number_of_trajectories = pops.get_number_trajectories() total_distances = [] numb = 0 logging.debug("Analysing Trajectories...") for i in tqdm.tqdm(range(len(names))): name = names[i] # obtain info from the file individuals = self.read_info(path_here + name) # store the msd per trajectory distance_per_trajectories = {} for j in range(number_of_trajectories): distances = [] for indiv in individuals: if indiv.trajectoryID == pops.get_population( j).tra.trajectoryID: distances.append(indiv.MSD) array = np.array(distances) MSD = (np.sum(array)) / len(array) distance_per_trajectories.update({j: MSD}) total_distances.append(distance_per_trajectories) self.print_graph(total_distances, path_here)
path = "/Volumes/TheMaze/TuringLearning/march/singleLSTM/" folders = how_many_fatherFolder(path) if "Figure_1.png" in folders: folders.remove("Figure_1.png") if "Figure_2.png" in folders: folders.remove("Figure_2.png") i = 0 for experiemnt in folders: logging.debug("Folder under analysis -> " + str(experiemnt)) first_path = path + experiemnt + "/" res = how_many_folder(first_path) missing = [] if len(res) != 5: if 3 not in res: missing.append(3) if 4 not in res: missing.append(4) if 5 not in res: missing.append(5) if 6 not in res: missing.append(6) if len(missing) > 0: logging.debug("...............Folder missing -> " + str(missing)) for el in res:
if __name__ == "__main__": logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.DEBUG) first_path = "/Users/alessandrozonta/Desktop/t/" folders = how_many_fatherFolder(first_path) folders = ["Experiment-cc"] for experiemnt in folders: logging.debug("Folder under analysis -> " + str(experiemnt)) second_path = first_path + experiemnt + "/" res = how_many_folder(second_path) num_folder = len(res) logging.debug("Folder to analise -> " + str(num_folder)) for el in res: path = second_path + str(el) + "/classifier.log" with open(path) as f: content = f.readlines() real_point_line = [] interesting_list = [] for el in content: if "Output LSTM transformed" in el:
def total_graph_mse(self): folders = how_many_fatherFolder(self.path) folders = [s for s in folders if not re.search('txt', s)] folders = [s for s in folders if not re.search('jpg', s)] folders = [s for s in folders if not re.search('png', s)] dfs = DataFrame(columns=['exp', 'neurones', 'MSD', "div"]) index = 0 for experiemnt in folders: logging.debug("Folder under analysis -> " + str(experiemnt)) name_experiement = str(experiemnt).replace("Experiment-tgcfs-", "") second_path = self.path + experiemnt + "/" res = how_many_folder(second_path) res = [s for s in res if not re.search('txt', s)] res = [s for s in res if not re.search('jpg', s)] res = [s for s in res if not re.search('png', s)] res = sorted_nicely(res) num_folder = len(res) logging.debug("Folder to analise -> " + str(num_folder)) for el in res: logging.debug("Folder under analysis -> " + str(el)) path_here = second_path + str(el) + "/MSD.txt" tratt = str(el).replace("neurones", "") with open(path_here) as f: content = f.readlines() div = -1 if "ETH" in name_experiement: div = 0 elif "G" in name_experiement: div = 1 elif "I" in name_experiement: div = 2 d = { "exp": name_experiement, "neurones": tratt, "MSD": float(content[0]), "div": div } df = DataFrame(data=d, index=[index]) dfs = dfs.append(df) index += 1 sns.factorplot(x="exp", y="MSD", hue="neurones", data=dfs, kind="bar", palette="muted") a = dfs.loc[dfs['div'] == 0] sns.factorplot(x="exp", y="MSD", hue="neurones", data=a, kind="bar", palette="muted") a = dfs.loc[dfs['div'] == 1] sns.factorplot(x="exp", y="MSD", hue="neurones", data=a, kind="bar", palette="muted") a = dfs.loc[dfs['div'] == 2] sns.factorplot(x="exp", y="MSD", hue="neurones", data=a, kind="bar", palette="muted") plt.show()
def run(self): folders = how_many_fatherFolder(self.path) folders = [s for s in folders if not re.search('txt', s)] folders = [s for s in folders if not re.search('jpg', s)] folders = [s for s in folders if not re.search('png', s)] for experiemnt in folders: logging.debug("Folder under analysis -> " + str(experiemnt)) second_path = self.path + experiemnt + "/" res = how_many_folder(second_path) folders = [s for s in folders if not re.search('txt', s)] folders = [s for s in folders if not re.search('jpg', s)] folders = [s for s in folders if not re.search('png', s)] num_folder = len(res) logging.debug("Folder to analise -> " + str(num_folder)) for el in res: logging.debug("Folder under analysis -> " + str(el)) path_here = second_path + str(el) + "/" names = [] for i in os.listdir(path_here): if os.path.isfile( os.path.join(path_here, i) ) and 'trajectory-generate-aSs-' in i and ".zip" in i: names.append(i) names = sorted_nicely(names) pops = Populations() # find the trajectories ID and Points trajectories = self.read_trajectory_info(path_here + "trajectory.zip") for tra in trajectories: pops.add_population(Population(tra)) # analysing the fitness logging.debug("Analysing the fitness...") max_agent, max_classifier = self.find_max_values_fitness( path_here) agent_generations_info, classifier_generations_info = self.read_fitness( path_here, max_agent, max_classifier) x = np.arange(len(agent_generations_info)) y_agent = [] std_agent = [] for element in agent_generations_info: y_agent.append(element.mean) std_agent.append(element.std) y_classifier = [] std_classifier = [] for element in classifier_generations_info: y_classifier.append(element.mean) std_classifier.append(element.std) # print fitnes self.print_fitnes(x, y_agent, std_agent, y_classifier, std_classifier, path_here) total_distances = [] total_distances_msd = [] std_distances = [] last_generations_values = [] logging.debug("Analysing Trajectories...") for i in tqdm.tqdm(range(len(names))): name = names[i] # obtain info from the file individuals = self.read_info(path_here + name) if i == len(names) - 1: for ind in individuals: for el in ind.array: last_generations_values.append(el) msds = [] for ind in individuals: msds.append(ind.MSD) total_distances.append(np.mean(np.array(msds))) std_distances.append(np.std(np.array(msds))) # store the msd per trajectory distance_per_trajectories = {} for j in range(number_of_trajectories): distances = [] for indiv in individuals: if indiv.trajectoryID == pops.get_population( j).tra.trajectoryID: distances.append(indiv.MSD) array = np.array(distances) MSD = (np.sum(array)) / len(array) distance_per_trajectories.update({j: MSD}) total_distances_msd.append(distance_per_trajectories) # print graph msd per trajectory self.print_graph_msd_per_trajectory(total_distances_msd, path_here) # print graph total msd self.print_graph_msd_total(total_distance, std_distances, path_here) # save the last value array = np.array(last_generations_values) MSD = (np.sum(array)) / len(array) with open(path_here + "/MSD.txt", "w") as text_file: text_file.write(str(MSD))
def run(self, one_tra_per_graph, f, n): folders = how_many_fatherFolder(self.path) if len(f) > 0: folders = f for experiemnt in folders: logging.debug("Folder under analysis -> " + str(experiemnt)) second_path = first_path + experiemnt + "/" res = how_many_folder(second_path) if len(n) > 0: res = n num_folder = len(res) logging.debug("Folder to analise -> " + str(num_folder)) for el in res: path = second_path + str(el) + "/" logging.debug("Folder under analysis -> " + str(el)) # check max fitness achiavable max_fitness = find_max_fitnes(path) if max_fitness is None: max_fitness = 500 pops = Populations() # find the trajectories ID and Points trajectories = self.read_trajectory_info(path + "trajectory.zip") for tra in trajectories: pops.add_population(Population(tra)) pictures = [] for i in os.listdir(path): if os.path.isfile(os.path.join(path, i)) and "_tmp0" in i and ".png" in i: pictures.append(i) # if (len(pictures)) > 700: # logging.debug("Pictures already available, skipping the folder") # break # count how many generation I have and find name files storing it names = [] for i in os.listdir(path): if os.path.isfile(os.path.join(path, i)) and self.name_to_check in i and ".zip" in i: names.append(i) names = sorted_nicely(names) if len(names) == 0: logging.debug("No files to generate") break # keep only last pic if self.printingOnlyLastPic: names = names[-self.howManyLastPic:] # load all the info to make the boundaries logging.debug("Loading Information...") for i in tqdm.tqdm(range(len(names))): name = names[i] individuals = self.read_info(path + name) for ind in individuals: pop = pops.get_pop_id(ind.trajectoryID) pop.add_individual(ind) logging.debug("Generating Graphs...") # now I have all the individuals in the populations if one_tra_per_graph: name = names[0] numb = 0 indivi = self.read_info(path + name) self.print_trajectories_each_in_graph(indivi, pops, numb, max_fitness, path) else: for i in tqdm.tqdm(range(len(names))): name = names[i] numb = int(name.replace(name_to_check, "").replace(".zip", "").split("-")[0]) indivi = self.read_info(path + name) self.print_trajectory(indivi, pops, numb, max_fitness, path)
def meanAllAgents(old_path): logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.DEBUG) folders = how_many_fatherFolder(old_path) dff = DataFrame(columns=['exp', 'trajectories', 'MSD']) iii = 0 for experiemnt in folders: logging.debug("Folder under analysis -> " + str(experiemnt)) name_experiement = str(experiemnt).replace("Experiment-tgcfs-", "").replace("-ETH", "") second_path = old_path + experiemnt + "/" res = how_many_folder(second_path) num_folder = len(res) logging.debug("Folder to analise -> " + str(num_folder)) for el in res: path = second_path + str(el) + "/" tratt = str(el) names = [] for i in os.listdir(path): if os.path.isfile( os.path.join(path, i) ) and 'trajectory-generate-aSs-' in i and ".zip" in i: names.append(i) names = sorted_nicely(names) total_distances = [] numb = 0 logging.debug("Analysing Trajectories...") for i in tqdm.tqdm(range(len(names))): name = names[i] numb += 1 # name = "trajectory-generatedPoints-" + str(numb) + "-" + str(numb) + ".zip" trajectories_label, json_file, id_label = reanInfo(path + name) # number = 0 # while number < len(id_label): # real points lat_real = [] lng_real = [] # generated points lat_generated = [] lng_generated = [] label_real = [] label_generated = [] for labels in trajectories_label: for el in json_file[labels]["real"]: if el[0] not in lat_real: lat_real.append(el[0]) lng_real.append(el[1]) label_real.append(json_file[labels]["id"]) for el in json_file[labels]["generated"]: if el[0] not in lat_generated: lat_generated.append(el[0]) lng_generated.append(el[1]) label_generated.append(json_file[labels]["id"]) distance_per_trajectories = {} # now for every trajectory compute the distance of the generated distance for i in range(len(label_real)): index = [ j for j, x in enumerate(label_generated) if x == label_real[i] ] distances = [] for ind in index: a = np.array((lat_real[i], lng_real[i])) b = np.array((lat_generated[ind], lng_generated[ind])) value = np.linalg.norm(a - b) * 100000 value = pow(value, 2) distances.append(value) array = np.array(distances) MSD = (np.sum(array)) / len(array) distance_per_trajectories.update({i: MSD}) total_distances.append(distance_per_trajectories) # # df = DataFrame(columns=['gen', 'tra', 'MSD']) # # x = [] # x = np.arange(0, len(total_distances)) # i = 0 # for el in total_distances: # for k in el.keys(): # d = {"gen": i, "tra": k, "MSD": el[k]} # dfs = DataFrame(data=d, index=[i]) # df = df.append(dfs) # i += 1 # sns.set_style("darkgrid") # df = df[df.columns].astype(float) # g = sns.lmplot(x="gen", y="MSD", hue="tra", data=df, scatter_kws={"s": 1}, fit_reg=False) last_line = total_distances[len(total_distances) - 1] arr = [] for k in last_line.keys(): arr.append(last_line[k]) array = np.array(arr) MSD = (np.sum(array)) / len(array) logging.debug(MSD) dd = {"exp": name_experiement, "trajectories": tratt, "MSD": MSD} dfss = DataFrame(data=dd, index=[iii]) iii += 1 dff = dff.append(dfss) # df.plot(x='gen', y='MSD') # sns.lmplot(x="gen", y="MSD", hue="tra", data=df) # a = df.loc[df['tra'] == 0] # ax = a.plot(x='gen', y='MSD', kind='scatter', label="0") # for i in range(1, 5): # a = df.loc[df['tra'] == i] # a.plot(x='gen', y='MSD', ax=ax, kind='scatter',label=i) # g.set(ylim=(0, 300)) # for j in range(5): # a = df.loc[df['tra'] == j] # a.plot(x='gen', y='MSD', ylim=(0,0.00000007)) # plt.figure(0) # sns.set_style("darkgrid") # plt.errorbar(x, mean, std) # plt.errorbar(x, min) # plt.errorbar(x, max_value) # # plt.plot(median) # plt.legend(("mean Difference", "min Difference", "max Difference")) # plt.xlabel("Generation") # plt.ylabel("Distance (metres) point generated with real point") # plt.legend(("Max Distance", "Min Distance", "Median Distance")) # save_name = path + 'msd.png' # plt.savefig(save_name, dpi=500, facecolor='w', edgecolor='w', orientation='portrait', papertype=None, # format=None, transparent=False, bbox_inches=None, pad_inches=0.1, frameon=None) # plt.close() # logging.debug("Graph saved!") # os.system("rm movie.mp4") # os.system("ffmpeg -f image2 -r 2 -i _tmp%05d.png -vcodec mpeg4 -y movie.mp4") # os.system("rm _tmp*.png") # logging.debug("End Program") sns.factorplot(x="exp", y="MSD", hue="trajectories", data=dff, kind="bar", palette="muted") plt.show()