Example #1
0
    def run(self):
        folders = how_many_fatherFolder(self.path)

        for experiemnt in folders:
            logging.debug("Folder under analysis -> " + str(experiemnt))
            second_path = self.path + experiemnt + "/"
            res = how_many_folder(second_path)
            num_folder = len(res)
            logging.debug("Folder to analise -> " + str(num_folder))

            for el in res:
                path_here = second_path + str(el) + "/"

                names = []
                for i in os.listdir(path_here):
                    if os.path.isfile(
                            os.path.join(path_here, i)
                    ) and 'trajectory-generate-aSs-' in i and ".zip" in i:
                        names.append(i)

                names = sorted_nicely(names)

                pops = Populations()
                # find the trajectories ID and Points
                trajectories = self.read_trajectory_info(path_here +
                                                         "trajectory.zip")
                for tra in trajectories:
                    pops.add_population(Population(tra))

                number_of_trajectories = pops.get_number_trajectories()
                total_distances = []
                numb = 0
                logging.debug("Analysing Trajectories...")
                for i in tqdm.tqdm(range(len(names))):
                    name = names[i]

                    # obtain info from the file
                    individuals = self.read_info(path_here + name)

                    # store the msd per trajectory
                    distance_per_trajectories = {}
                    for j in range(number_of_trajectories):
                        distances = []
                        for indiv in individuals:
                            if indiv.trajectoryID == pops.get_population(
                                    j).tra.trajectoryID:
                                distances.append(indiv.MSD)

                        array = np.array(distances)
                        MSD = (np.sum(array)) / len(array)
                        distance_per_trajectories.update({j: MSD})
                    total_distances.append(distance_per_trajectories)

                self.print_graph(total_distances, path_here)
Example #2
0
    path = "/Volumes/TheMaze/TuringLearning/march/singleLSTM/"

    folders = how_many_fatherFolder(path)

    if "Figure_1.png" in folders:
        folders.remove("Figure_1.png")
    if "Figure_2.png" in folders:
        folders.remove("Figure_2.png")

    i = 0
    for experiemnt in folders:
        logging.debug("Folder under analysis -> " + str(experiemnt))

        first_path = path + experiemnt + "/"

        res = how_many_folder(first_path)

        missing = []
        if len(res) != 5:
            if 3 not in res:
                missing.append(3)
            if 4 not in res:
                missing.append(4)
            if 5 not in res:
                missing.append(5)
            if 6 not in res:
                missing.append(6)
        if len(missing) > 0:
            logging.debug("...............Folder missing -> " + str(missing))

        for el in res:
Example #3
0

if __name__ == "__main__":
    logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.DEBUG)


    first_path = "/Users/alessandrozonta/Desktop/t/"

    folders = how_many_fatherFolder(first_path)

    folders = ["Experiment-cc"]

    for experiemnt in folders:
        logging.debug("Folder under analysis -> " + str(experiemnt))
        second_path = first_path + experiemnt + "/"
        res = how_many_folder(second_path)


        num_folder = len(res)
        logging.debug("Folder to analise -> " + str(num_folder))

        for el in res:
            path = second_path + str(el) + "/classifier.log"

            with open(path) as f:
                content = f.readlines()

                real_point_line = []
                interesting_list = []
                for el in content:
                    if "Output LSTM transformed" in el:
Example #4
0
    def total_graph_mse(self):
        folders = how_many_fatherFolder(self.path)
        folders = [s for s in folders if not re.search('txt', s)]
        folders = [s for s in folders if not re.search('jpg', s)]
        folders = [s for s in folders if not re.search('png', s)]

        dfs = DataFrame(columns=['exp', 'neurones', 'MSD', "div"])
        index = 0
        for experiemnt in folders:
            logging.debug("Folder under analysis -> " + str(experiemnt))
            name_experiement = str(experiemnt).replace("Experiment-tgcfs-", "")
            second_path = self.path + experiemnt + "/"
            res = how_many_folder(second_path)
            res = [s for s in res if not re.search('txt', s)]
            res = [s for s in res if not re.search('jpg', s)]
            res = [s for s in res if not re.search('png', s)]
            res = sorted_nicely(res)
            num_folder = len(res)
            logging.debug("Folder to analise -> " + str(num_folder))

            for el in res:
                logging.debug("Folder under analysis -> " + str(el))
                path_here = second_path + str(el) + "/MSD.txt"
                tratt = str(el).replace("neurones", "")

                with open(path_here) as f:
                    content = f.readlines()

                    div = -1
                    if "ETH" in name_experiement:
                        div = 0
                    elif "G" in name_experiement:
                        div = 1
                    elif "I" in name_experiement:
                        div = 2

                    d = {
                        "exp": name_experiement,
                        "neurones": tratt,
                        "MSD": float(content[0]),
                        "div": div
                    }
                    df = DataFrame(data=d, index=[index])
                    dfs = dfs.append(df)
                    index += 1

        sns.factorplot(x="exp",
                       y="MSD",
                       hue="neurones",
                       data=dfs,
                       kind="bar",
                       palette="muted")
        a = dfs.loc[dfs['div'] == 0]
        sns.factorplot(x="exp",
                       y="MSD",
                       hue="neurones",
                       data=a,
                       kind="bar",
                       palette="muted")
        a = dfs.loc[dfs['div'] == 1]
        sns.factorplot(x="exp",
                       y="MSD",
                       hue="neurones",
                       data=a,
                       kind="bar",
                       palette="muted")
        a = dfs.loc[dfs['div'] == 2]
        sns.factorplot(x="exp",
                       y="MSD",
                       hue="neurones",
                       data=a,
                       kind="bar",
                       palette="muted")
        plt.show()
Example #5
0
    def run(self):
        folders = how_many_fatherFolder(self.path)
        folders = [s for s in folders if not re.search('txt', s)]
        folders = [s for s in folders if not re.search('jpg', s)]
        folders = [s for s in folders if not re.search('png', s)]

        for experiemnt in folders:
            logging.debug("Folder under analysis -> " + str(experiemnt))
            second_path = self.path + experiemnt + "/"
            res = how_many_folder(second_path)
            folders = [s for s in folders if not re.search('txt', s)]
            folders = [s for s in folders if not re.search('jpg', s)]
            folders = [s for s in folders if not re.search('png', s)]
            num_folder = len(res)
            logging.debug("Folder to analise -> " + str(num_folder))

            for el in res:
                logging.debug("Folder under analysis -> " + str(el))
                path_here = second_path + str(el) + "/"

                names = []
                for i in os.listdir(path_here):
                    if os.path.isfile(
                            os.path.join(path_here, i)
                    ) and 'trajectory-generate-aSs-' in i and ".zip" in i:
                        names.append(i)

                names = sorted_nicely(names)

                pops = Populations()
                # find the trajectories ID and Points
                trajectories = self.read_trajectory_info(path_here +
                                                         "trajectory.zip")
                for tra in trajectories:
                    pops.add_population(Population(tra))

                # analysing the fitness
                logging.debug("Analysing the fitness...")
                max_agent, max_classifier = self.find_max_values_fitness(
                    path_here)
                agent_generations_info, classifier_generations_info = self.read_fitness(
                    path_here, max_agent, max_classifier)

                x = np.arange(len(agent_generations_info))
                y_agent = []
                std_agent = []
                for element in agent_generations_info:
                    y_agent.append(element.mean)
                    std_agent.append(element.std)
                y_classifier = []
                std_classifier = []
                for element in classifier_generations_info:
                    y_classifier.append(element.mean)
                    std_classifier.append(element.std)

                # print fitnes
                self.print_fitnes(x, y_agent, std_agent, y_classifier,
                                  std_classifier, path_here)

                total_distances = []
                total_distances_msd = []
                std_distances = []
                last_generations_values = []
                logging.debug("Analysing Trajectories...")
                for i in tqdm.tqdm(range(len(names))):
                    name = names[i]

                    # obtain info from the file
                    individuals = self.read_info(path_here + name)

                    if i == len(names) - 1:
                        for ind in individuals:
                            for el in ind.array:
                                last_generations_values.append(el)

                    msds = []
                    for ind in individuals:
                        msds.append(ind.MSD)
                    total_distances.append(np.mean(np.array(msds)))
                    std_distances.append(np.std(np.array(msds)))

                    # store the msd per trajectory
                    distance_per_trajectories = {}
                    for j in range(number_of_trajectories):
                        distances = []
                        for indiv in individuals:
                            if indiv.trajectoryID == pops.get_population(
                                    j).tra.trajectoryID:
                                distances.append(indiv.MSD)

                        array = np.array(distances)
                        MSD = (np.sum(array)) / len(array)
                        distance_per_trajectories.update({j: MSD})
                    total_distances_msd.append(distance_per_trajectories)

                # print graph msd per trajectory
                self.print_graph_msd_per_trajectory(total_distances_msd,
                                                    path_here)

                # print graph total msd
                self.print_graph_msd_total(total_distance, std_distances,
                                           path_here)

                # save the last value
                array = np.array(last_generations_values)
                MSD = (np.sum(array)) / len(array)

                with open(path_here + "/MSD.txt", "w") as text_file:
                    text_file.write(str(MSD))
Example #6
0
    def run(self, one_tra_per_graph, f, n):
        folders = how_many_fatherFolder(self.path)
        if len(f) > 0:
            folders = f

        for experiemnt in folders:
            logging.debug("Folder under analysis -> " + str(experiemnt))
            second_path = first_path + experiemnt + "/"
            res = how_many_folder(second_path)

            if len(n) > 0:
                res = n

            num_folder = len(res)
            logging.debug("Folder to analise -> " + str(num_folder))

            for el in res:
                path = second_path + str(el) + "/"
                logging.debug("Folder under analysis -> " + str(el))


                # check max fitness achiavable
                max_fitness = find_max_fitnes(path)
                if max_fitness is None:
                    max_fitness = 500

                pops = Populations()
                # find the trajectories ID and Points
                trajectories = self.read_trajectory_info(path + "trajectory.zip")
                for tra in trajectories:
                    pops.add_population(Population(tra))


                pictures = []
                for i in os.listdir(path):
                    if os.path.isfile(os.path.join(path, i)) and "_tmp0" in i and ".png" in i:
                        pictures.append(i)
                # if (len(pictures)) > 700:
                #     logging.debug("Pictures already available, skipping the folder")
                #     break

                # count how many generation I have and find name files storing it
                names = []
                for i in os.listdir(path):
                    if os.path.isfile(os.path.join(path, i)) and self.name_to_check in i and ".zip" in i:
                        names.append(i)
                names = sorted_nicely(names)

                if len(names) == 0:
                    logging.debug("No files to generate")
                    break

                # keep only last pic
                if self.printingOnlyLastPic:
                    names = names[-self.howManyLastPic:]

                # load all the info to make the boundaries
                logging.debug("Loading Information...")

                for i in tqdm.tqdm(range(len(names))):
                    name = names[i]
                    individuals = self.read_info(path + name)

                    for ind in individuals:
                        pop = pops.get_pop_id(ind.trajectoryID)
                        pop.add_individual(ind)

                logging.debug("Generating Graphs...")

                # now I have all the individuals in the populations
                if one_tra_per_graph:
                    name = names[0]
                    numb = 0
                    indivi = self.read_info(path + name)
                    self.print_trajectories_each_in_graph(indivi, pops, numb, max_fitness, path)
                else:
                    for i in tqdm.tqdm(range(len(names))):
                        name = names[i]
                        numb = int(name.replace(name_to_check, "").replace(".zip", "").split("-")[0])

                        indivi = self.read_info(path + name)

                        self.print_trajectory(indivi, pops, numb, max_fitness, path)
def meanAllAgents(old_path):
    logging.basicConfig(format='%(asctime)s %(message)s',
                        datefmt='%m/%d/%Y %I:%M:%S %p',
                        level=logging.DEBUG)

    folders = how_many_fatherFolder(old_path)
    dff = DataFrame(columns=['exp', 'trajectories', 'MSD'])
    iii = 0
    for experiemnt in folders:
        logging.debug("Folder under analysis -> " + str(experiemnt))
        name_experiement = str(experiemnt).replace("Experiment-tgcfs-",
                                                   "").replace("-ETH", "")
        second_path = old_path + experiemnt + "/"
        res = how_many_folder(second_path)
        num_folder = len(res)
        logging.debug("Folder to analise -> " + str(num_folder))

        for el in res:
            path = second_path + str(el) + "/"
            tratt = str(el)

            names = []
            for i in os.listdir(path):
                if os.path.isfile(
                        os.path.join(path, i)
                ) and 'trajectory-generate-aSs-' in i and ".zip" in i:
                    names.append(i)

            names = sorted_nicely(names)

            total_distances = []
            numb = 0
            logging.debug("Analysing Trajectories...")
            for i in tqdm.tqdm(range(len(names))):
                name = names[i]
                numb += 1
                # name = "trajectory-generatedPoints-" + str(numb) + "-" + str(numb) + ".zip"

                trajectories_label, json_file, id_label = reanInfo(path + name)
                # number = 0
                # while number < len(id_label):

                # real points
                lat_real = []
                lng_real = []
                # generated points
                lat_generated = []
                lng_generated = []

                label_real = []
                label_generated = []
                for labels in trajectories_label:
                    for el in json_file[labels]["real"]:
                        if el[0] not in lat_real:
                            lat_real.append(el[0])
                            lng_real.append(el[1])
                            label_real.append(json_file[labels]["id"])

                    for el in json_file[labels]["generated"]:
                        if el[0] not in lat_generated:
                            lat_generated.append(el[0])
                            lng_generated.append(el[1])
                            label_generated.append(json_file[labels]["id"])

                distance_per_trajectories = {}
                # now for every trajectory compute the distance of the generated distance
                for i in range(len(label_real)):
                    index = [
                        j for j, x in enumerate(label_generated)
                        if x == label_real[i]
                    ]
                    distances = []
                    for ind in index:
                        a = np.array((lat_real[i], lng_real[i]))
                        b = np.array((lat_generated[ind], lng_generated[ind]))
                        value = np.linalg.norm(a - b) * 100000
                        value = pow(value, 2)
                        distances.append(value)

                    array = np.array(distances)
                    MSD = (np.sum(array)) / len(array)
                    distance_per_trajectories.update({i: MSD})
                total_distances.append(distance_per_trajectories)
            #
            # df = DataFrame(columns=['gen', 'tra', 'MSD'])
            #
            # x = []
            # x = np.arange(0, len(total_distances))
            # i = 0
            # for el in total_distances:
            #     for k in el.keys():
            #         d = {"gen": i, "tra": k, "MSD": el[k]}
            #         dfs = DataFrame(data=d, index=[i])
            #         df = df.append(dfs)
            #     i += 1
            # sns.set_style("darkgrid")
            # df = df[df.columns].astype(float)
            # g = sns.lmplot(x="gen", y="MSD", hue="tra", data=df, scatter_kws={"s": 1}, fit_reg=False)

            last_line = total_distances[len(total_distances) - 1]
            arr = []
            for k in last_line.keys():
                arr.append(last_line[k])

            array = np.array(arr)
            MSD = (np.sum(array)) / len(array)
            logging.debug(MSD)

            dd = {"exp": name_experiement, "trajectories": tratt, "MSD": MSD}
            dfss = DataFrame(data=dd, index=[iii])
            iii += 1
            dff = dff.append(dfss)

            # df.plot(x='gen', y='MSD')
            # sns.lmplot(x="gen", y="MSD", hue="tra", data=df)

            # a = df.loc[df['tra'] == 0]
            # ax = a.plot(x='gen', y='MSD', kind='scatter', label="0")
            # for i in range(1, 5):
            #     a = df.loc[df['tra'] == i]
            #     a.plot(x='gen', y='MSD', ax=ax, kind='scatter',label=i)

            # g.set(ylim=(0, 300))

            # for j in range(5):
            #     a = df.loc[df['tra'] == j]
            #     a.plot(x='gen', y='MSD', ylim=(0,0.00000007))

            # plt.figure(0)
            # sns.set_style("darkgrid")
            # plt.errorbar(x, mean, std)
            # plt.errorbar(x, min)
            # plt.errorbar(x, max_value)
            # # plt.plot(median)
            # plt.legend(("mean Difference", "min Difference", "max Difference"))
            # plt.xlabel("Generation")
            # plt.ylabel("Distance (metres) point generated with real point")
            # plt.legend(("Max Distance", "Min Distance", "Median Distance"))

            # save_name = path + 'msd.png'
            # plt.savefig(save_name, dpi=500, facecolor='w', edgecolor='w', orientation='portrait', papertype=None,
            #             format=None, transparent=False, bbox_inches=None, pad_inches=0.1, frameon=None)
            # plt.close()
            # logging.debug("Graph saved!")

            # os.system("rm movie.mp4")
            # os.system("ffmpeg -f image2 -r 2 -i _tmp%05d.png -vcodec mpeg4 -y movie.mp4")
            # os.system("rm _tmp*.png")
            # logging.debug("End Program")
    sns.factorplot(x="exp",
                   y="MSD",
                   hue="trajectories",
                   data=dff,
                   kind="bar",
                   palette="muted")
    plt.show()