Example #1
0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--timeit", '-t', action="store_true")
    args = viscid.vutil.common_argparse(parser, default_verb=0)

    for nu in (False, True):
        viscid.logger.info("Test set, nonuniform = {0}".format(nu))
        b = viscid.make_dipole(l=(-20, -6.4, -6.4), h=(20, 6.4, 6.4),
                               n=(256, 128, 128), dtype='f4', nonuniform=nu)
        seed = viscid.Circle(p0=(0, 0, 0), pole=(0, 0, 1), r=5.5, n=int(1e4))

        kwargs = dict(method='euler1', ibound=0.1)

        viscid.logger.info("Serial test...")
        l0, t0 = do(args.timeit, viscid.calc_streamlines, b, seed,
                    nr_procs=1, threads=False, **kwargs)
        viscid.logger.info("Parallel test (processes)...")
        l1, t1 = do(args.timeit, viscid.calc_streamlines, b, seed,
                    nr_procs=2, threads=False, **kwargs)
        viscid.logger.info("Parallel test (threads)...")
        l2, t2 = do(args.timeit, viscid.calc_streamlines, b, seed,
                    nr_procs=2, threads=True, **kwargs)

        np.testing.assert_almost_equal(t0.data, t1.data)
        np.testing.assert_almost_equal(t0.data, t2.data)
        assert len(l0) > 0
        assert len(l0) == len(l1)
        assert len(l0) == len(l2)
        for i in range(len(l0)):
            np.testing.assert_almost_equal(l0[i], l1[i])
            np.testing.assert_almost_equal(l0[i], l2[i])

    return 0
Example #2
0
def check():
    """Runtime check compiled modules"""
    import os
    import sys

    import numpy as np
    import viscid

    ret = 0

    check_version()
    print()

    #####################################################
    # run streamline calculation (checks cython modules)
    try:
        cotr = viscid.Cotr(dip_tilt=15.0, dip_gsm=21.0)  # pylint: disable=not-callable
        m = cotr.get_dipole_moment(crd_system='gse')
        seeds = viscid.seed.Sphere((0.0, 0.0, 0.0),
                                   2.0,
                                   pole=-m,
                                   ntheta=25,
                                   nphi=25,
                                   thetalim=(5, 90),
                                   philim=(5, 360),
                                   phi_endpoint=False)
        B = viscid.make_dipole(m=m,
                               crd_system='gse',
                               n=(32, 32, 32),
                               l=(-25, -25, -25),
                               h=(25, 25, 25),
                               dtype='f8')
        lines, _ = viscid.calc_streamlines(B, seeds, ibound=1.0)
        for line in lines:
            if np.any(np.isnan(line)):
                raise ValueError("NaN in line")
        print("Cython module ran successfully")
    except Exception as e:
        print("Cython module has runtime errors.")
        print(str(e))
        ret |= (1 << 0)
    print()

    ####################################
    # load a jrrle file (checks fortran)
    try:
        f3d = viscid.load_file(
            os.path.join(viscid.sample_dir, 'sample_jrrle.3df.*'))
        _ = np.array(f3d['pp'].data)
        print("Fortran module ran successfully")
    except Exception as e:
        print("Fortran module has runtime errors.")
        print(str(e))
        ret |= (1 << 1)
    print()

    return ret
def _main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--notwo", dest="notwo", action="store_true")
    parser.add_argument("--nothree", dest="nothree", action="store_true")
    parser.add_argument("--show", "--plot", action="store_true")
    args = viscid.vutil.common_argparse(parser, default_verb=0)

    plot2d = not args.notwo
    plot3d = not args.nothree

    viscid.logger.info("Testing field lines on 2d field...")
    B = viscid.make_dipole(twod=True)
    line = viscid.seed.Line((0.2, 0.0, 0.0), (1.0, 0.0, 0.0), 10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(
        B, line, plot2d=plot2d, plot3d=plot3d, title="2D", show=args.show, ibound=0.07, obound0=obound0, obound1=obound1
    )

    viscid.logger.info("Testing field lines on 3d field...")
    B = viscid.make_dipole(m=[0.2, 0.3, -0.9])
    sphere = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, ntheta=20, nphi=10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(
        B,
        sphere,
        plot2d=plot2d,
        plot3d=plot3d,
        title="3D",
        show=args.show,
        ibound=0.07,
        obound0=obound0,
        obound1=obound1,
        method=viscid.RK12,
    )
Example #4
0
def check():
    """Runtime check compiled modules"""
    import os
    import sys

    import numpy as np
    import viscid

    ret = 0

    check_version()
    print()

    #####################################################
    # run streamline calculation (checks cython modules)
    try:
        cotr = viscid.Cotr(dip_tilt=15.0, dip_gsm=21.0)  # pylint: disable=not-callable
        m = cotr.get_dipole_moment(crd_system='gse')
        seeds = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=25,
                                   nphi=25, thetalim=(5, 90), philim=(5, 360),
                                   phi_endpoint=False)
        B = viscid.make_dipole(m=m, crd_system='gse', n=(32, 32, 32),
                               l=(-25, -25, -25), h=(25, 25, 25), dtype='f8')
        lines, _ = viscid.calc_streamlines(B, seeds, ibound=1.0)
        for line in lines:
            if np.any(np.isnan(line)):
                raise ValueError("NaN in line")
        print("Cython module ran successfully")
    except Exception as e:
        print("Cython module has runtime errors.")
        print(str(e))
        ret |= (1 << 0)
    print()

    ####################################
    # load a jrrle file (checks fortran)
    try:
        f3d = viscid.load_file(os.path.join(viscid.sample_dir,
                                            'sample_jrrle.3df.*'))
        _ = np.array(f3d['pp'].data)
        print("Fortran module ran successfully")
    except Exception as e:
        print("Fortran module has runtime errors.")
        print(str(e))
        ret |= (1 << 1)
    print()

    return ret
Example #5
0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--notwo", dest='notwo', action="store_true")
    parser.add_argument("--nothree", dest='nothree', action="store_true")
    parser.add_argument("--show", "--plot", action="store_true")
    args = viscid.vutil.common_argparse(parser, default_verb=0)

    plot2d = not args.notwo
    plot3d = not args.nothree

    # #################################################
    # viscid.logger.info("Testing field lines on 2d field...")
    B = viscid.make_dipole(twod=True)
    line = viscid.seed.Line((0.2, 0.0, 0.0), (1.0, 0.0, 0.0), 10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(B,
             line,
             plot2d=plot2d,
             plot3d=plot3d,
             title='2D',
             show=args.show,
             ibound=0.07,
             obound0=obound0,
             obound1=obound1)

    #################################################
    viscid.logger.info("Testing field lines on 3d field...")
    B = viscid.make_dipole(m=[0.2, 0.3, -0.9])
    sphere = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, ntheta=20, nphi=10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(B,
             sphere,
             plot2d=plot2d,
             plot3d=plot3d,
             title='3D',
             show=args.show,
             ibound=0.12,
             obound0=obound0,
             obound1=obound1,
             method=viscid.RK12)

    # The Remainder of this test makes sure higher order methods are indeed
    # more accurate than lower order methods... this could find a bug in
    # the integrators

    ##################################################
    # test accuracy of streamlines in an ideal dipole
    cotr = viscid.Cotr(dip_tilt=15.0, dip_gsm=21.0)  # pylint: disable=not-callable
    m = cotr.get_dipole_moment(crd_system='gse')
    seeds = viscid.seed.Sphere((0.0, 0.0, 0.0),
                               2.0,
                               pole=-m,
                               ntheta=25,
                               nphi=25,
                               thetalim=(5, 90),
                               philim=(5, 360),
                               phi_endpoint=False)
    B = viscid.make_dipole(m=m,
                           crd_system='gse',
                           n=(256, 256, 256),
                           l=(-25, -25, -25),
                           h=(25, 25, 25),
                           dtype='f8')

    seeds_xyz = seeds.get_points()
    # seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :]
    seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :]

    e1_lines, e1_lsps, t_e1 = lines_and_lsps(B,
                                             seeds,
                                             method='euler1',
                                             ibound=1.0,
                                             cotr=cotr)
    rk2_lines, rk2_lsps, t_rk2 = lines_and_lsps(B,
                                                seeds,
                                                method='rk2',
                                                ibound=1.0,
                                                cotr=cotr)
    rk4_lines, rk4_lsps, t_rk4 = lines_and_lsps(B,
                                                seeds,
                                                method='rk4',
                                                ibound=1.0,
                                                cotr=cotr)
    e1a_lines, e1a_lsps, t_e1a = lines_and_lsps(B,
                                                seeds,
                                                method='euler1a',
                                                ibound=1.0,
                                                cotr=cotr)
    rk12_lines, rk12_lsps, t_rk12 = lines_and_lsps(B,
                                                   seeds,
                                                   method='rk12',
                                                   ibound=1.0,
                                                   cotr=cotr)
    rk45_lines, rk45_lsps, t_rk45 = lines_and_lsps(B,
                                                   seeds,
                                                   method='rk45',
                                                   ibound=1.0,
                                                   cotr=cotr)

    def _calc_rel_diff(_lsp, _ideal_lsp, _d):
        _diffs = []
        for _ilsp, _iideal in zip(_lsp, _ideal_lsp.T):
            _a = _ilsp[_d, :]
            _b = _iideal[_d]
            _diffs.append((_a - _b) / _b)
        return _diffs

    lshell_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 0)
    phi_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 1)

    lshell_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 0)
    phi_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 1)

    lshell_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 0)
    phi_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 1)

    lshell_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 0)
    phi_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 1)

    lshell_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 0)
    phi_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 1)

    lshell_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 0)
    phi_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 1)

    methods = [
        'Euler 1', 'Runge Kutta 2', 'Runge Kutta 4', 'Euler 1 Adaptive Step',
        'Runge Kutta 12 Adaptive Step', 'Runge Kutta 45 Adaptive Step'
    ]
    wall_ts = [t_e1, t_rk2, t_rk4, t_e1a, t_rk12, t_rk45]
    all_lines = [
        e1_lines, rk2_lines, rk4_lines, e1a_lines, rk12_lines, rk45_lines
    ]
    all_lshell_diffs = [
        lshell_diff_e1, lshell_diff_rk2, lshell_diff_rk4, lshell_diff_e1a,
        lshell_diff_rk12, lshell_diff_rk45
    ]
    lshell_diffs = [
        np.abs(np.concatenate(lshell_diff_e1, axis=0)),
        np.abs(np.concatenate(lshell_diff_rk2, axis=0)),
        np.abs(np.concatenate(lshell_diff_rk4, axis=0)),
        np.abs(np.concatenate(lshell_diff_e1a, axis=0)),
        np.abs(np.concatenate(lshell_diff_rk12, axis=0)),
        np.abs(np.concatenate(lshell_diff_rk45, axis=0))
    ]
    phi_diffs = [
        np.abs(np.concatenate(phi_diff_e1, axis=0)),
        np.abs(np.concatenate(phi_diff_rk2, axis=0)),
        np.abs(np.concatenate(phi_diff_rk4, axis=0)),
        np.abs(np.concatenate(phi_diff_e1a, axis=0)),
        np.abs(np.concatenate(phi_diff_rk12, axis=0)),
        np.abs(np.concatenate(phi_diff_rk45, axis=0))
    ]
    npts = [len(lsd) for lsd in lshell_diffs]
    lshell_75 = [np.percentile(lsdiff, 75) for lsdiff in lshell_diffs]

    # # 3D DEBUG PLOT:: for really getting under the covers
    # vlab.clf()
    # earth1 = viscid.seed.Sphere((0.0, 0.0, 0.0), 1.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls1 = viscid.xyz2lsrlp(earth1.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # earth2 = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls2 = viscid.xyz2lsrlp(earth2.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # earth4 = viscid.seed.Sphere((0.0, 0.0, 0.0), 4.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls4 = viscid.xyz2lsrlp(earth4.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # clim = [2.0, 6.0]
    # vlab.mesh_from_seeds(earth1, scalars=ls1, clim=clim, logscale=True)
    # vlab.mesh_from_seeds(earth2, scalars=ls2, clim=clim, logscale=True, opacity=0.5)
    # vlab.mesh_from_seeds(earth4, scalars=ls2, clim=clim, logscale=True, opacity=0.25)
    # vlab.plot3d_lines(e1_lines, scalars=[_e1_lsp[0, :] for _e1_lsp in e1_lsps],
    #                  clim=clim, logscale=True)
    # vlab.colorbar(title="L-Shell")
    # vlab.show()

    assert lshell_75[1] < lshell_75[0], "RK2 should have less error than Euler"
    assert lshell_75[2] < lshell_75[1], "RK4 should have less error than RK2"
    assert lshell_75[3] < lshell_75[
        0], "Euler 1a should have less error than Euler 1"
    assert lshell_75[4] < lshell_75[
        0], "RK 12 should have less error than Euler 1"
    assert lshell_75[5] < lshell_75[1], "RK 45 should have less error than RK2"

    try:
        if not plot2d:
            raise ImportError
        from matplotlib import pyplot as plt
        from viscid.plot import vpyplot as vlt

        # stats on error for all points on all lines
        _ = plt.figure(figsize=(15, 8))
        ax1 = vlt.subplot(121)
        v = plt.violinplot(lshell_diffs,
                           showextrema=False,
                           showmedians=False,
                           vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            t_txt = ", took {0:.2e} seconds".format(wall_ts[i])
            stat_txt = format_data_range(lshell_diffs[i])
            plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c)
            plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax1.get_yaxis().set_visible(False)
        plt.title('L-Shell')
        plt.xlabel('Relative Difference from Ideal (as fraction)')

        ax2 = vlt.subplot(122)
        v = plt.violinplot(phi_diffs,
                           showextrema=False,
                           showmedians=False,
                           vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            t_txt = ", took {0:.2e} seconds".format(wall_ts[i])
            stat_txt = format_data_range(phi_diffs[i])
            plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c)
            plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax2.get_yaxis().set_visible(False)
        plt.title('Longitude')
        plt.xlabel('Relative Difference from Ideal (as fraction)')

        vlt.auto_adjust_subplots()

        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

        # stats for ds for all points on all lines
        _ = plt.figure(figsize=(10, 8))
        ax1 = vlt.subplot(111)

        ds = [
            np.concatenate([
                np.linalg.norm(_l[:, 1:] - _l[:, :-1], axis=0) for _l in lines
            ]) for lines in all_lines
        ]
        v = plt.violinplot(ds,
                           showextrema=False,
                           showmedians=False,
                           vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            stat_txt = format_data_range(ds[i])
            plt.text(xl + 0.01 * (xh - xl), i + 1.15, txt, color=c)
            plt.text(xl + 0.01 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax1.get_yaxis().set_visible(False)
        plt.xscale('log')
        plt.title('Step Size')
        plt.xlabel('Absolute Step Size')
        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

        # random other information
        _ = plt.figure(figsize=(13, 10))

        ## wall time for each method
        vlt.subplot(221)
        plt.scatter(range(len(methods)),
                    wall_ts,
                    color=colors,
                    s=150,
                    marker='s',
                    edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, wall_ts[i]),
                         xytext=(0, 15.0),
                         color=colors[i],
                         horizontalalignment='center',
                         verticalalignment='bottom',
                         textcoords='offset points')
        plt.ylabel("Wall Time (s)")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(wall_ts), np.max(wall_ts)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## number of points calculated for each method
        vlt.subplot(222)
        plt.scatter(range(len(methods)),
                    npts,
                    color=colors,
                    s=150,
                    marker='s',
                    edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, npts[i]),
                         xytext=(0, 15.0),
                         color=colors[i],
                         horizontalalignment='center',
                         verticalalignment='bottom',
                         textcoords='offset points')
        plt.ylabel("Number of Streamline Points Calculated")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(npts), np.max(npts)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## Wall time per segment, this should show the overhead of the method
        vlt.subplot(223)
        wall_t_per_seg = np.asarray(wall_ts) / np.asarray(npts)
        plt.scatter(range(len(methods)),
                    wall_t_per_seg,
                    color=colors,
                    s=150,
                    marker='s',
                    edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, wall_t_per_seg[i]),
                         xytext=(0, 15.0),
                         color=colors[i],
                         horizontalalignment='center',
                         verticalalignment='bottom',
                         textcoords='offset points')
        plt.ylabel("Wall Time Per Line Segment")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(wall_t_per_seg), np.max(wall_t_per_seg)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        plt.gca().xaxis.set_major_formatter(viscid.plot.mpl_extra.steve_axfmt)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## 75th percentile of l-shell error for each method
        vlt.subplot(224)
        plt.scatter(range(len(methods)),
                    lshell_75,
                    color=colors,
                    s=150,
                    marker='s',
                    edgecolors='none')
        plt.yscale('log')

        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, lshell_75[i]),
                         xytext=(0, 15.0),
                         color=colors[i],
                         horizontalalignment='center',
                         verticalalignment='bottom',
                         textcoords='offset points')
        plt.ylabel("75th Percentile of Relative L-Shell Error")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        ymin, ymax = np.min(lshell_75), np.max(lshell_75)
        plt.ylim(0.75 * ymin, 2.5 * ymax)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        vlt.auto_adjust_subplots(subplot_params=dict(wspace=0.25, hspace=0.15))

        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

    except ImportError:
        pass

    try:
        if not plot3d:
            raise ImportError
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800],
                              offscreen=not args.show,
                              bgcolor=(1, 1, 1),
                              fgcolor=(0, 0, 0))
            _global_ns['figure'] = fig

        for i, method in zip(count(), methods):
            # if i in (3, 4):
            #     next_plot_fname(__file__, series='q3')
            #     print(i, "::", [line.shape[1] for line in all_lines[i]])
            #     # continue
            vlab.clf()
            _lshell_diff = [np.abs(s) for s in all_lshell_diffs[i]]
            vlab.plot3d_lines(all_lines[i], scalars=_lshell_diff)
            vlab.colorbar(title="Relative L-Shell Error (as fraction)")
            vlab.title(method, size=0.5)
            vlab.orientation_axes()
            vlab.view(azimuth=40,
                      elevation=140,
                      distance=80.0,
                      focalpoint=[0, 0, 0])
            vlab.savefig(next_plot_fname(__file__, series='q3'))
            if args.show:
                vlab.show()
    except ImportError:
        pass

    # prevent weird xorg bad-instructions on tear down
    if 'figure' in _global_ns and _global_ns['figure'] is not None:
        from viscid.plot import vlab
        vlab.mlab.close(_global_ns['figure'])

    return 0
Example #6
0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--show", "--plot", action="store_true")
    args = viscid.vutil.common_argparse(parser, default_verb=0)

    viscid.logger.setLevel(viscid.logging.DEBUG)
    args.show = False

    cotr = viscid.Cotr(dip_tilt=20.0, dip_gsm=15.0)  # pylint: disable=not-callable
    b = viscid.make_dipole(m=cotr.get_dipole_moment(), n=(32, 32, 32))

    seeds = viscid.Circle(n=5, r=1.5, pole=[0, 0, 1])
    lines, topo = viscid.calc_streamlines(b, seeds, ibound=1.4, method='rk45')

    for i in range(2):
        # make sure this works for lines with 0, 1, 2, 3 vertices
        if i == 1:
            lines[1] = lines[2][:, :0]
            lines[2] = lines[2][:, :1]
            lines[3] = lines[3][:, :2]
            lines[4] = lines[4][:, :3]

        viscid.logger.debug('---')
        viscid.logger.debug('{0}'.format(len(lines)))
        for line in lines:
            viscid.logger.debug('line shape: {0}'.format(line.shape))
        viscid.logger.debug('---')

        do_test(lines,
                scalars=None,
                txt='given None',
                show=args.show)

        do_test(lines,
                scalars='#ff0000',
                txt='given a single 24bit rgb hex color',
                show=args.show)

        do_test(lines,
                scalars='#ff000066',
                txt='given a single 32bit rgba hex color',
                show=args.show)

        do_test(lines,
                scalars='#f00',
                txt='given a single 12bit rgb hex color',
                show=args.show)

        do_test(lines,
                scalars='#f006',
                txt='given a single 16bit rgba hex color',
                show=args.show)

        do_test(lines,
                scalars=['#ff0000', '#cc0000', '#aa0000', '#880000', '#660000'],
                txt='given a list of Nlines 24bit rgb hex colors',
                show=args.show)

        do_test(lines,
                scalars=['#ff000066', '#cc000066', '#aa000066', '#88000066',
                         '#66000066'],
                txt='given a list of Nlines 32bit rgba hex colors',
                show=args.show)

        do_test(lines,
                scalars=['#f00', '#c00', '#a00', '#800', '#600'],
                txt='given a list of Nlines 12bit rgb hex colors',
                show=args.show)

        do_test(lines,
                scalars=['#f00a', '#c009', '#a008', '#8007', '#6006'],
                txt='given a list of Nlines 16bit rgba hex colors',
                show=args.show)

        do_test(lines,
                scalars=[0.8, 0.0, 0.2],
                txt='given a single rgb [0..1] color',
                show=args.show)

        do_test(lines,
                scalars=[0.8, 0.0, 0.2, 0.8],
                txt='given a single rgba [0..1] color',
                show=args.show)

        do_test(lines,
                scalars=[(0.8, 0.0, 0.2), (0.7, 0.0, 0.3), (0.6, 0.0, 0.4),
                         (0.5, 0.0, 0.5), (0.4, 0.0, 0.6)],
                txt='given a list of Nlines rgb [0..1] tuples',
                show=args.show)

        do_test(lines,
                scalars=[(0.8, 0.0, 0.2, 1.0), (0.7, 0.0, 0.3, 0.9),
                         (0.6, 0.0, 0.4, 0.8), (0.5, 0.0, 0.5, 0.7),
                         (0.4, 0.0, 0.6, 0.6)],
                txt='given a list of Nlines rgba [0..1] tuples',
                show=args.show)

        do_test(lines,
                scalars=[250, 0, 250],
                txt='given a single rgb [0..255] color',
                show=args.show)

        do_test(lines,
                scalars=[250, 0, 250, 190],
                txt='given a single rgba [0..255] color',
                show=args.show)

        do_test(lines,
                scalars=[(204, 0, 51), (179, 0, 77), (153, 0, 102),
                         (127, 0, 127), (0.4, 0, 102)],
                txt='given a list of Nlines rgb [0..255] tuples',
                show=args.show)

        do_test(lines,
                scalars=[(204, 0, 51, 255), (179, 0, 77, 230),
                         (153, 0, 102, 204), (127, 0, 127, 179),
                         (102, 0, 102, 153)],
                txt='given a list of Nlines rgba [0..255] tuples',
                show=args.show)

        do_test(lines,
                scalars=['#ff000088', 'blue', 'lavenderblush', 'c', '#4f4'],
                txt='given a mix of color hex/html color names',
                show=args.show)

        do_test(lines,
                scalars=topo,
                txt='scalars == topo value',
                show=args.show)

        do_test(lines,
                scalars=viscid.topology2color(topo),
                txt='scalars == topo2color value',
                show=args.show)

        do_test(lines,
                scalars=np.log(viscid.magnitude(b)),
                txt='given bmag',
                show=args.show)

    # prevent weird xorg bad-instructions on tear down
    if 'figure' in _global_ns and _global_ns['figure'] is not None:
        from viscid.plot import vlab
        vlab.mlab.close(_global_ns['figure'])

    return 0
Example #7
0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--prof", action="store_true")
    parser.add_argument("--show", "--plot", action="store_true")
    args = vutil.common_argparse(parser)

    b = viscid.make_dipole(l=(-5, -5, -5), h=(5, 5, 5), n=(255, 255, 127),
                           m=(0, 0, -1))
    b2 = np.sum(b * b, axis=b.nr_comp)

    if args.prof:
        print("Without boundaries")
        viscid.timeit(viscid.grad, b2, bnd=False, timeit_repeat=10,
                      timeit_print_stats=True)
        print("With boundaries")
        viscid.timeit(viscid.grad, b2, bnd=True, timeit_repeat=10,
                      timeit_print_stats=True)

    grad_b2 = viscid.grad(b2)
    grad_b2.pretty_name = r"$\nabla$ B$^2$"
    conv = viscid.convective_deriv(b)
    conv.pretty_name = r"(B $\cdot \nabla$) B"

    _ = plt.figure(figsize=(9, 4.2))

    ax1 = vlt.subplot(231)
    vlt.plot(b2['z=0f'], logscale=True)
    vlt.plot(b2['z=0f'], logscale=True, style='contour', levels=10, colors='grey')
    # vlt.plot2d_quiver(viscid.normalize(b['z=0f']), step=16, pivot='mid')
    ax2 = vlt.subplot(234)
    vlt.plot(b2['y=0f'], logscale=True)
    vlt.plot(b2['y=0f'], logscale=True, style='contour', levels=10, colors='grey')
    vlt.plot2d_quiver(viscid.normalize(b['y=0f'], preferred='numpy'),
                      step=16, pivot='mid')

    vlt.subplot(232, sharex=ax1, sharey=ax1)
    vlt.plot(1e-4 + viscid.magnitude(grad_b2['z=0f']), logscale=True)
    vlt.plot(1e-4 + viscid.magnitude(grad_b2['z=0f']), logscale=True,
             style='contour', levels=10, colors='grey')
    vlt.plot2d_quiver(viscid.normalize(grad_b2['z=0f']), step=16, pivot='mid')
    vlt.subplot(235, sharex=ax2, sharey=ax2)
    vlt.plot(1e-4 + viscid.magnitude(grad_b2['y=0f']), logscale=True)
    vlt.plot(1e-4 + viscid.magnitude(grad_b2['y=0f']), logscale=True,
             style='contour', levels=10, colors='grey')
    vlt.plot2d_quiver(viscid.normalize(grad_b2['y=0f']), step=16, pivot='mid')

    vlt.subplot(233, sharex=ax1, sharey=ax1)
    vlt.plot(viscid.magnitude(conv['z=0f']), logscale=True)
    vlt.plot(viscid.magnitude(conv['z=0f']), logscale=True,
             style='contour', levels=10, colors='grey')
    vlt.plot2d_quiver(viscid.normalize(conv['z=0f']), step=16, pivot='mid')
    vlt.subplot(236, sharex=ax2, sharey=ax2)
    vlt.plot(viscid.magnitude(conv['y=0f']), logscale=True)
    vlt.plot(viscid.magnitude(conv['y=0f']), logscale=True,
             style='contour', levels=10, colors='grey')
    vlt.plot2d_quiver(viscid.normalize(conv['y=0f']), step=16, pivot='mid')

    vlt.auto_adjust_subplots()

    plt.savefig(next_plot_fname(__file__))
    if args.show:
        vlt.show()

    return 0
Example #8
0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--prof", action="store_true")
    parser.add_argument("--show", "--plot", action="store_true")
    args = vutil.common_argparse(parser)

    b = viscid.make_dipole(l=(-5, -5, -5), h=(5, 5, 5), n=(255, 255, 127),
                           m=(0, 0, -1))
    b2 = np.sum(b * b, axis=b.nr_comp)

    if args.prof:
        print("Without boundaries")
        viscid.timeit(viscid.grad, b2, bnd=False, timeit_repeat=10,
                      timeit_print_stats=True)
        print("With boundaries")
        viscid.timeit(viscid.grad, b2, bnd=True, timeit_repeat=10,
                      timeit_print_stats=True)

    grad_b2 = viscid.grad(b2)
    grad_b2.pretty_name = r"$\nabla$ B$^2$"
    conv = viscid.convective_deriv(b)
    conv.pretty_name = r"(B $\cdot \nabla$) B"

    _ = plt.figure(figsize=(9, 4.2))

    ax1 = vlt.subplot(231)
    vlt.plot(b2['z=0j'], logscale=True)
    vlt.plot(b2['z=0j'], logscale=True, style='contour', levels=10, colors='grey')
    # vlt.plot2d_quiver(viscid.normalize(b['z=0j']), step=16, pivot='mid')
    ax2 = vlt.subplot(234)
    vlt.plot(b2['y=0j'], logscale=True)
    vlt.plot(b2['y=0j'], logscale=True, style='contour', levels=10, colors='grey')
    vlt.plot2d_quiver(viscid.normalize(b['y=0j'], preferred='numpy'),
                      step=16, pivot='mid')

    vlt.subplot(232, sharex=ax1, sharey=ax1)
    vlt.plot(1e-4 + viscid.magnitude(grad_b2['z=0j']), logscale=True)
    vlt.plot(1e-4 + viscid.magnitude(grad_b2['z=0j']), logscale=True,
             style='contour', levels=10, colors='grey')
    vlt.plot2d_quiver(viscid.normalize(grad_b2['z=0j']), step=16, pivot='mid')
    vlt.subplot(235, sharex=ax2, sharey=ax2)
    vlt.plot(1e-4 + viscid.magnitude(grad_b2['y=0j']), logscale=True)
    vlt.plot(1e-4 + viscid.magnitude(grad_b2['y=0j']), logscale=True,
             style='contour', levels=10, colors='grey')
    vlt.plot2d_quiver(viscid.normalize(grad_b2['y=0j']), step=16, pivot='mid')

    vlt.subplot(233, sharex=ax1, sharey=ax1)
    vlt.plot(viscid.magnitude(conv['z=0j']), logscale=True)
    vlt.plot(viscid.magnitude(conv['z=0j']), logscale=True,
             style='contour', levels=10, colors='grey')
    vlt.plot2d_quiver(viscid.normalize(conv['z=0j']), step=16, pivot='mid')
    vlt.subplot(236, sharex=ax2, sharey=ax2)
    vlt.plot(viscid.magnitude(conv['y=0j']), logscale=True)
    vlt.plot(viscid.magnitude(conv['y=0j']), logscale=True,
             style='contour', levels=10, colors='grey')
    vlt.plot2d_quiver(viscid.normalize(conv['y=0j']), step=16, pivot='mid')

    vlt.auto_adjust_subplots()

    plt.savefig(next_plot_fname(__file__))
    if args.show:
        vlt.show()

    return 0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--show", "--plot", action="store_true")
    args = viscid.vutil.common_argparse(parser, default_verb=0)

    viscid.logger.setLevel(viscid.logging.DEBUG)
    args.show = False

    cotr = viscid.Cotr(dip_tilt=20.0, dip_gsm=15.0)  # pylint: disable=not-callable
    b = viscid.make_dipole(m=cotr.get_dipole_moment(), n=(32, 32, 32))

    seeds = viscid.Circle(n=5, r=1.5, pole=[0, 0, 1])
    lines, topo = viscid.calc_streamlines(b, seeds, ibound=1.4, method='rk45')

    for i in range(2):
        # make sure this works for lines with 0, 1, 2, 3 vertices
        if i == 1:
            lines[1] = lines[2][:, :0]
            lines[2] = lines[2][:, :1]
            lines[3] = lines[3][:, :2]
            lines[4] = lines[4][:, :3]

        viscid.logger.debug('---')
        viscid.logger.debug('{0}'.format(len(lines)))
        for line in lines:
            viscid.logger.debug('line shape: {0}'.format(line.shape))
        viscid.logger.debug('---')

        do_test(lines,
                scalars=None,
                txt='given None',
                show=args.show)

        do_test(lines,
                scalars='#ff0000',
                txt='given a single 24bit rgb hex color',
                show=args.show)

        do_test(lines,
                scalars='#ff000066',
                txt='given a single 32bit rgba hex color',
                show=args.show)

        do_test(lines,
                scalars='#f00',
                txt='given a single 12bit rgb hex color',
                show=args.show)

        do_test(lines,
                scalars='#f006',
                txt='given a single 16bit rgba hex color',
                show=args.show)

        do_test(lines,
                scalars=['#ff0000', '#cc0000', '#aa0000', '#880000', '#660000'],
                txt='given a list of Nlines 24bit rgb hex colors',
                show=args.show)

        do_test(lines,
                scalars=['#ff000066', '#cc000066', '#aa000066', '#88000066',
                         '#66000066'],
                txt='given a list of Nlines 32bit rgba hex colors',
                show=args.show)

        do_test(lines,
                scalars=['#f00', '#c00', '#a00', '#800', '#600'],
                txt='given a list of Nlines 12bit rgb hex colors',
                show=args.show)

        do_test(lines,
                scalars=['#f00a', '#c009', '#a008', '#8007', '#6006'],
                txt='given a list of Nlines 16bit rgba hex colors',
                show=args.show)

        do_test(lines,
                scalars=[0.8, 0.0, 0.2],
                txt='given a single rgb [0..1] color',
                show=args.show)

        do_test(lines,
                scalars=[0.8, 0.0, 0.2, 0.8],
                txt='given a single rgba [0..1] color',
                show=args.show)

        do_test(lines,
                scalars=[(0.8, 0.0, 0.2), (0.7, 0.0, 0.3), (0.6, 0.0, 0.4),
                         (0.5, 0.0, 0.5), (0.4, 0.0, 0.6)],
                txt='given a list of Nlines rgb [0..1] tuples',
                show=args.show)

        do_test(lines,
                scalars=[(0.8, 0.0, 0.2, 1.0), (0.7, 0.0, 0.3, 0.9),
                         (0.6, 0.0, 0.4, 0.8), (0.5, 0.0, 0.5, 0.7),
                         (0.4, 0.0, 0.6, 0.6)],
                txt='given a list of Nlines rgba [0..1] tuples',
                show=args.show)

        do_test(lines,
                scalars=[250, 0, 250],
                txt='given a single rgb [0..255] color',
                show=args.show)

        do_test(lines,
                scalars=[250, 0, 250, 190],
                txt='given a single rgba [0..255] color',
                show=args.show)

        do_test(lines,
                scalars=[(204, 0, 51), (179, 0, 77), (153, 0, 102),
                         (127, 0, 127), (0.4, 0, 102)],
                txt='given a list of Nlines rgb [0..255] tuples',
                show=args.show)

        do_test(lines,
                scalars=[(204, 0, 51, 255), (179, 0, 77, 230),
                         (153, 0, 102, 204), (127, 0, 127, 179),
                         (102, 0, 102, 153)],
                txt='given a list of Nlines rgba [0..255] tuples',
                show=args.show)

        do_test(lines,
                scalars=['#ff000088', 'blue', 'lavenderblush', 'c', '#4f4'],
                txt='given a mix of color hex/html color names',
                show=args.show)

        do_test(lines,
                scalars=topo,
                txt='scalars == topo value',
                show=args.show)

        do_test(lines,
                scalars=viscid.topology2color(topo),
                txt='scalars == topo2color value',
                show=args.show)

        do_test(lines,
                scalars=np.log(viscid.magnitude(b)),
                txt='given bmag',
                show=args.show)

    # prevent weird xorg bad-instructions on tear down
    if 'figure' in _global_ns and _global_ns['figure'] is not None:
        from viscid.plot import vlab
        vlab.mlab.close(_global_ns['figure'])

    return 0
def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--notwo", dest='notwo', action="store_true")
    parser.add_argument("--nothree", dest='nothree', action="store_true")
    parser.add_argument("--show", "--plot", action="store_true")
    args = viscid.vutil.common_argparse(parser, default_verb=0)

    plot2d = not args.notwo
    plot3d = not args.nothree

    # #################################################
    # viscid.logger.info("Testing field lines on 2d field...")
    B = viscid.make_dipole(twod=True)
    line = viscid.seed.Line((0.2, 0.0, 0.0), (1.0, 0.0, 0.0), 10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(B, line, plot2d=plot2d, plot3d=plot3d, title='2D', show=args.show,
             ibound=0.07, obound0=obound0, obound1=obound1)

    #################################################
    viscid.logger.info("Testing field lines on 3d field...")
    B = viscid.make_dipole(m=[0.2, 0.3, -0.9])
    sphere = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, ntheta=20, nphi=10)
    obound0 = np.array([-4, -4, -4], dtype=B.data.dtype)
    obound1 = np.array([4, 4, 4], dtype=B.data.dtype)
    run_test(B, sphere, plot2d=plot2d, plot3d=plot3d, title='3D', show=args.show,
             ibound=0.12, obound0=obound0, obound1=obound1, method=viscid.RK12)

    # The Remainder of this test makes sure higher order methods are indeed
    # more accurate than lower order methods... this could find a bug in
    # the integrators

    ##################################################
    # test accuracy of streamlines in an ideal dipole
    cotr = viscid.Cotr(dip_tilt=15.0, dip_gsm=21.0)  # pylint: disable=not-callable
    m = cotr.get_dipole_moment(crd_system='gse')
    seeds = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=25, nphi=25,
                               thetalim=(5, 90), philim=(5, 360), phi_endpoint=False)
    B = viscid.make_dipole(m=m, crd_system='gse', n=(256, 256, 256),
                           l=(-25, -25, -25), h=(25, 25, 25), dtype='f8')

    seeds_xyz = seeds.get_points()
    # seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :]
    seeds_lsp = viscid.xyz2lsrlp(seeds_xyz, cotr=cotr, crd_system=B)[(0, 3), :]

    e1_lines, e1_lsps, t_e1 = lines_and_lsps(B, seeds, method='euler1',
                                             ibound=1.0, cotr=cotr)
    rk2_lines, rk2_lsps, t_rk2 = lines_and_lsps(B, seeds, method='rk2',
                                                ibound=1.0, cotr=cotr)
    rk4_lines, rk4_lsps, t_rk4 = lines_and_lsps(B, seeds, method='rk4',
                                                ibound=1.0, cotr=cotr)
    e1a_lines, e1a_lsps, t_e1a = lines_and_lsps(B, seeds, method='euler1a',
                                                ibound=1.0, cotr=cotr)
    rk12_lines, rk12_lsps, t_rk12 = lines_and_lsps(B, seeds, method='rk12',
                                                   ibound=1.0, cotr=cotr)
    rk45_lines, rk45_lsps, t_rk45 = lines_and_lsps(B, seeds, method='rk45',
                                                   ibound=1.0, cotr=cotr)

    def _calc_rel_diff(_lsp, _ideal_lsp, _d):
        _diffs = []
        for _ilsp, _iideal in zip(_lsp, _ideal_lsp.T):
            _a = _ilsp[_d, :]
            _b = _iideal[_d]
            _diffs.append((_a - _b) / _b)
        return _diffs

    lshell_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 0)
    phi_diff_e1 = _calc_rel_diff(e1_lsps, seeds_lsp, 1)

    lshell_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 0)
    phi_diff_rk2 = _calc_rel_diff(rk2_lsps, seeds_lsp, 1)

    lshell_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 0)
    phi_diff_rk4 = _calc_rel_diff(rk4_lsps, seeds_lsp, 1)

    lshell_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 0)
    phi_diff_e1a = _calc_rel_diff(e1a_lsps, seeds_lsp, 1)

    lshell_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 0)
    phi_diff_rk12 = _calc_rel_diff(rk12_lsps, seeds_lsp, 1)

    lshell_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 0)
    phi_diff_rk45 = _calc_rel_diff(rk45_lsps, seeds_lsp, 1)

    methods = ['Euler 1', 'Runge Kutta 2', 'Runge Kutta 4',
               'Euler 1 Adaptive Step', 'Runge Kutta 12 Adaptive Step',
               'Runge Kutta 45 Adaptive Step']
    wall_ts = [t_e1, t_rk2, t_rk4, t_e1a, t_rk12, t_rk45]
    all_lines = [e1_lines, rk2_lines, rk4_lines, e1a_lines, rk12_lines,
                 rk45_lines]
    all_lshell_diffs = [lshell_diff_e1, lshell_diff_rk2, lshell_diff_rk4,
                        lshell_diff_e1a, lshell_diff_rk12, lshell_diff_rk45]
    lshell_diffs = [np.abs(np.concatenate(lshell_diff_e1, axis=0)),
                    np.abs(np.concatenate(lshell_diff_rk2, axis=0)),
                    np.abs(np.concatenate(lshell_diff_rk4, axis=0)),
                    np.abs(np.concatenate(lshell_diff_e1a, axis=0)),
                    np.abs(np.concatenate(lshell_diff_rk12, axis=0)),
                    np.abs(np.concatenate(lshell_diff_rk45, axis=0))]
    phi_diffs = [np.abs(np.concatenate(phi_diff_e1, axis=0)),
                 np.abs(np.concatenate(phi_diff_rk2, axis=0)),
                 np.abs(np.concatenate(phi_diff_rk4, axis=0)),
                 np.abs(np.concatenate(phi_diff_e1a, axis=0)),
                 np.abs(np.concatenate(phi_diff_rk12, axis=0)),
                 np.abs(np.concatenate(phi_diff_rk45, axis=0))]
    npts = [len(lsd) for lsd in lshell_diffs]
    lshell_75 = [np.percentile(lsdiff, 75) for lsdiff in lshell_diffs]

    # # 3D DEBUG PLOT:: for really getting under the covers
    # vlab.clf()
    # earth1 = viscid.seed.Sphere((0.0, 0.0, 0.0), 1.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls1 = viscid.xyz2lsrlp(earth1.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # earth2 = viscid.seed.Sphere((0.0, 0.0, 0.0), 2.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls2 = viscid.xyz2lsrlp(earth2.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # earth4 = viscid.seed.Sphere((0.0, 0.0, 0.0), 4.0, pole=-m, ntheta=60, nphi=120,
    #                             thetalim=(15, 165), philim=(0, 360))
    # ls4 = viscid.xyz2lsrlp(earth4.get_points(), cotr=cotr, crd_system='gse')[0, :]
    # clim = [2.0, 6.0]
    # vlab.mesh_from_seeds(earth1, scalars=ls1, clim=clim, logscale=True)
    # vlab.mesh_from_seeds(earth2, scalars=ls2, clim=clim, logscale=True, opacity=0.5)
    # vlab.mesh_from_seeds(earth4, scalars=ls2, clim=clim, logscale=True, opacity=0.25)
    # vlab.plot3d_lines(e1_lines, scalars=[_e1_lsp[0, :] for _e1_lsp in e1_lsps],
    #                  clim=clim, logscale=True)
    # vlab.colorbar(title="L-Shell")
    # vlab.show()

    assert lshell_75[1] < lshell_75[0], "RK2 should have less error than Euler"
    assert lshell_75[2] < lshell_75[1], "RK4 should have less error than RK2"
    assert lshell_75[3] < lshell_75[0], "Euler 1a should have less error than Euler 1"
    assert lshell_75[4] < lshell_75[0], "RK 12 should have less error than Euler 1"
    assert lshell_75[5] < lshell_75[1], "RK 45 should have less error than RK2"

    try:
        if not plot2d:
            raise ImportError
        from viscid.plot import vpyplot as vlt
        from matplotlib import pyplot as plt

        # stats on error for all points on all lines
        _ = plt.figure(figsize=(15, 8))
        ax1 = vlt.subplot(121)
        v = plt.violinplot(lshell_diffs, showextrema=False, showmedians=False,
                               vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            t_txt = ", took {0:.2e} seconds".format(wall_ts[i])
            stat_txt = format_data_range(lshell_diffs[i])
            plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c)
            plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax1.get_yaxis().set_visible(False)
        plt.title('L-Shell')
        plt.xlabel('Relative Difference from Ideal (as fraction)')

        ax2 = vlt.subplot(122)
        v = plt.violinplot(phi_diffs, showextrema=False, showmedians=False,
                               vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            t_txt = ", took {0:.2e} seconds".format(wall_ts[i])
            stat_txt = format_data_range(phi_diffs[i])
            plt.text(xl + 0.35 * (xh - xl), i + 1.15, txt + t_txt, color=c)
            plt.text(xl + 0.35 * (xh - xl), i + 0.85, stat_txt, color=c)
        ax2.get_yaxis().set_visible(False)
        plt.title('Longitude')
        plt.xlabel('Relative Difference from Ideal (as fraction)')

        vlt.auto_adjust_subplots()

        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

        # stats for ds for all points on all lines
        _ = plt.figure(figsize=(10, 8))
        ax1 = vlt.subplot(111)

        ds = [np.concatenate([np.linalg.norm(_l[:, 1:] - _l[:, :-1], axis=0)
                              for _l in lines]) for lines in all_lines]
        v = plt.violinplot(ds, showextrema=False, showmedians=False,
                               vert=False)
        colors = set_violin_colors(v)
        xl, xh = plt.gca().get_xlim()
        for i, txt, c in zip(count(), methods, colors):
            stat_txt = format_data_range(ds[i])
            plt.annotate(txt, xy=(0.55, i / len(methods) + 0.1), color=c,
                         xycoords='axes fraction')
            plt.annotate(stat_txt, xy=(0.55, i / len(methods) + 0.04), color=c,
                         xycoords='axes fraction')
        ax1.get_yaxis().set_visible(False)
        plt.xscale('log')
        plt.title('Step Size')
        plt.xlabel('Absolute Step Size')
        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()


        # random other information
        _ = plt.figure(figsize=(13, 10))

        ## wall time for each method
        vlt.subplot(221)
        plt.scatter(range(len(methods)), wall_ts, color=colors,
                        s=150, marker='s', edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, wall_ts[i]), xytext=(0, 15.0),
                             color=colors[i], horizontalalignment='center',
                             verticalalignment='bottom',
                             textcoords='offset points')
        plt.ylabel("Wall Time (s)")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(wall_ts), np.max(wall_ts)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## number of points calculated for each method
        vlt.subplot(222)
        plt.scatter(range(len(methods)), npts, color=colors,
                        s=150, marker='s', edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, npts[i]), xytext=(0, 15.0),
                             color=colors[i], horizontalalignment='center',
                             verticalalignment='bottom',
                             textcoords='offset points')
        plt.ylabel("Number of Streamline Points Calculated")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(npts), np.max(npts)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## Wall time per segment, this should show the overhead of the method
        vlt.subplot(223)
        wall_t_per_seg = np.asarray(wall_ts) / np.asarray(npts)
        plt.scatter(range(len(methods)), wall_t_per_seg, color=colors,
                        s=150, marker='s', edgecolors='none')
        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, wall_t_per_seg[i]), xytext=(0, 15.0),
                             color=colors[i], horizontalalignment='center',
                             verticalalignment='bottom',
                             textcoords='offset points')
        plt.ylabel("Wall Time Per Line Segment")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        yl, yh = np.min(wall_t_per_seg), np.max(wall_t_per_seg)
        y_padding = 0.4 * (yh - yl)
        plt.ylim(yl - y_padding, yh + y_padding)
        plt.gca().get_xaxis().set_visible(False)
        plt.gca().xaxis.set_major_formatter(viscid.plot.mpl_extra.steve_axfmt)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        ## 75th percentile of l-shell error for each method
        vlt.subplot(224)
        plt.scatter(range(len(methods)), lshell_75, color=colors,
                        s=150, marker='s', edgecolors='none')
        plt.yscale('log')

        for i, meth in enumerate(methods):
            meth = meth.replace(" Adaptive Step", "\nAdaptive Step")
            plt.annotate(meth, (i, lshell_75[i]), xytext=(0, 15.0),
                             color=colors[i], horizontalalignment='center',
                             verticalalignment='bottom',
                             textcoords='offset points')
        plt.ylabel("75th Percentile of Relative L-Shell Error")
        x_padding = 0.5
        plt.xlim(-x_padding, len(methods) - x_padding)
        ymin, ymax = np.min(lshell_75), np.max(lshell_75)
        plt.ylim(0.75 * ymin, 2.5 * ymax)
        plt.gca().get_xaxis().set_visible(False)
        for _which in ('right', 'top'):
            plt.gca().spines[_which].set_color('none')

        vlt.auto_adjust_subplots(subplot_params=dict(wspace=0.25, hspace=0.15))

        vlt.savefig(next_plot_fname(__file__, series='q2'))
        if args.show:
            vlt.show()

    except ImportError:
        pass

    try:
        if not plot3d:
            raise ImportError
        from viscid.plot import vlab

        try:
            fig = _global_ns['figure']
            vlab.clf()
        except KeyError:
            fig = vlab.figure(size=[1200, 800], offscreen=not args.show,
                              bgcolor=(1, 1, 1), fgcolor=(0, 0, 0))
            _global_ns['figure'] = fig

        for i, method in zip(count(), methods):
            # if i in (3, 4):
            #     next_plot_fname(__file__, series='q3')
            #     print(i, "::", [line.shape[1] for line in all_lines[i]])
            #     # continue
            vlab.clf()
            _lshell_diff = [np.abs(s) for s in all_lshell_diffs[i]]
            vlab.plot3d_lines(all_lines[i], scalars=_lshell_diff)
            vlab.colorbar(title="Relative L-Shell Error (as fraction)")
            vlab.title(method, size=0.5)
            vlab.orientation_axes()
            vlab.view(azimuth=40, elevation=140, distance=80.0,
                      focalpoint=[0, 0, 0])
            vlab.savefig(next_plot_fname(__file__, series='q3'))
            if args.show:
                vlab.show()
    except ImportError:
        pass

    # prevent weird xorg bad-instructions on tear down
    if 'figure' in _global_ns and _global_ns['figure'] is not None:
        from viscid.plot import vlab
        vlab.mlab.close(_global_ns['figure'])

    return 0