"file_mixed_ext": Unsupported, "image_png": Unsupported, "image_png_missing": Unsupported, "str_int_leading_zeros": Numeric, "str_float_non_leading_zeros": Numeric, "str_int_zeros": Numeric, "email_address_str": Categorical, "str_complex_nan": Categorical, "email_address": Unsupported, "email_address_missing": Unsupported, } if int(pd.__version__[0]) >= 1: inference_map["string_dtype_series"] = Categorical @pytest.mark.parametrize(**get_inference_cases(series, inference_map, typeset)) def test_inference(series, type, typeset, difference): """Test the generated combinations for "inference(series) == type" Args: series: the series to test type: the type to test against """ config["vars"]["num"]["low_categorical_threshold"].set(0) result, message = infers(series, type, typeset, difference) assert result, message # Conversions in one single step convert_map = [ # Model type, Relation type
"str_true_false_none": Boolean, "str_true_false_nan": Boolean, "somedate": DateTime, "empty": Unsupported, "list": Unsupported, "mixed": Unsupported, "dict": Unsupported, "tuple": Unsupported, "inf_only": Numeric, "nullable_int": Numeric, "catnum": Numeric, } @pytest.mark.parametrize(**patch_arg( get_inference_cases(series, inference_map, my_typeset), "inference_type")) def test_inference(name, series, inference_type, typeset, difference): """Test the generated combinations for "inference(series) == type_" Args: series: the series to test type_: the type to test against """ result, message = infers(name, series, inference_type, typeset, difference) assert result, message # Conversions in one single step convert_map = [ # Model type, Relation type (
"image_png_missing": Object, "str_int_leading_zeros": String, "str_float_non_leading_zeros": Float, "str_int_zeros": Integer, "email_address": Object, "email_address_missing": Object, "email_address_str": String, "all_null_none": Generic, "all_null_nan": Generic, "all_null_nat": Generic, "all_null_empty_str": String, "string_dtype_series": String, } @pytest.mark.parametrize(**get_inference_cases(array, inference_map, typeset)) def test_inference(name, series, inference_type, typeset, difference): """Test the generated combinations for "inference(array) == type" Args: series: the array to test inference_type: the type to test against """ result, message = infers(name, series, inference_type, typeset, difference) assert result, message # Conversions in one single step convert_map = [ # Model type, Relation type (Integer, Float, {"int_nan_series", "float_series2"}),
"str_complex_nan": Categorical, "email_address": Unsupported, "email_address_missing": Unsupported, "all_null_nat": Unsupported, "all_null_empty_str": Categorical, "py_datetime_str": Categorical, "all_null_none": Unsupported, "complex_series_py_float": Numeric, "all_null_nan": Unsupported, } if int(pd.__version__[0]) >= 1: inference_map["string_dtype_series"] = Categorical @pytest.mark.parametrize(**patch_arg( get_inference_cases(series, inference_map, my_typeset_default), "inference_type")) def test_inference(name, series, inference_type, typeset, difference): """Test the generated combinations for "inference(series) == type" Args: series: the series to test inference_type: the type to test against """ result, message = infers(name, series, inference_type, typeset, difference) assert result, message # Conversions in one single step convert_map = [ # Model type, Relation type