Example #1
0
def graphPlot(workspace, again):
    """Function for plotting graphs in 2D and 3D space

    2D graphs are plotted for expression in one variable and equations in two variables. 3D graphs are plotted for expressions in two variables and equations in three variables.

    Arguments:
        workspace {QtWidgets.QWidget} -- main layout

    Returns:
        graphVars {list} -- variables to be plotted on the graph
        func {numpy.array(2D)/function(3D)} -- equation converted to compatible data type for plotting
        variables {list} -- variables in given equation
        again {bool} -- True when an equation can be plotted in 2D and 3D both else False

    Note:
        The func obtained from graphPlot() function is of different type for 2D and 3D plots. For 2D, func is a numpy array, and for 3D, func is a function.
    """
    tokens = workspace.eqToks[-1]
    axisRange = workspace.axisRange
    eqType = getTokensType(tokens)
    LHStok, RHStok = getLHSandRHS(tokens)
    variables = sorted(getVariables(LHStok, RHStok))
    dim = len(variables)
    if (dim == 1 and eqType == "expression") or ((dim == 2)
                                                 and eqType == "equation"):
        if again:
            variables.append('f(' + variables[0] + ')')
            graphVars, func = plotIn3D(LHStok, RHStok, variables, axisRange)
        else:
            graphVars, func = plotIn2D(LHStok, RHStok, variables, axisRange)
        if dim == 1:
            variables.append('f(' + variables[0] + ')')
    elif (dim == 2 and eqType == "expression") or ((dim == 3)
                                                   and eqType == "equation"):
        graphVars, func = plotIn3D(LHStok, RHStok, variables, axisRange)
        if dim == 2:
            variables.append('f(' + variables[0] + ',' + variables[1] + ')')
    else:
        return [], None, None
    return graphVars, func, variables
Example #2
0
def plot(workspace):
    """When called from window.py it initiates rendering of equations.

    Arguments:
        workspace {QtWidgets.QWidget} -- main layout
    """
    workspace.figure2D.clear()
    workspace.figure3D.clear()

    tokens = workspace.eqToks[-1]
    eqType = getTokensType(tokens)
    LHStok, RHStok = getLHSandRHS(tokens)
    variables = sorted(getVariables(LHStok, RHStok))
    dim = len(variables)

    graphVars, func, variables = graphPlot(workspace, False)
    renderPlot(workspace, graphVars, func, variables)

    # Handles case when a equation (like x^2 + y^2 = 5) can be rendered in 2D as well as 3D.
    if ((dim == 2) and eqType == "equation"):
        graphVars, func, variables = graphPlot(workspace, True)
        renderPlot(workspace, graphVars, func, variables)
Example #3
0
        def calluser():
            availableOperations = []
            tokenString = ''
            equationTokens = []
            if varName == 'Back':
                self.input = str(self.textedit.toPlainText())
                self.tokens = tokenizer(self.input)
                # print(self.tokens)
                lhs, rhs = getLHSandRHS(self.tokens)
                operations, self.solutionType = checkTypes(
                    lhs, rhs)
                self.refreshButtons(operations)

            elif operation == 'solve':
                self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = solveFor(self.lTokens, self.rTokens, varName)

            elif operation == 'integrate':
                self.lTokens, availableOperations, tokenString, equationTokens, comments = integrate(self.lTokens, varName)

            elif operation == 'differentiate':
                self.lTokens, availableOperations, tokenString, equationTokens, comments = differentiate(self.lTokens, varName)

            self.eqToks = equationTokens
            self.output = resultLatex(operation, equationTokens, comments, varName)
            if len(availableOperations) == 0:
                self.clearButtons()
            else:
                self.refreshButtons(availableOperations)
            if self.mode == 'normal':
                self.textedit.setText(tokenString)
            elif self.mode == 'interaction':
                cursor = self.textedit.textCursor()
                cursor.insertText(tokenString)
            if self.showStepByStep is True:
                showSteps(self)
            if self.showPlotter is True:
                plot(self)
Example #4
0
def quickTest(inp, operation, wrtVar=None):
    if operation.__name__ not in ['ArithemeticMean', 'Mode', 'Median']:
        if (inp.count(';') == 2):
            afterSplit = inp.split(';')
            eqStr1 = afterSplit[0]
            eqStr2 = afterSplit[1]
            eqStr3 = afterSplit[2]
            tokens = [tokenizer(eqStr1), tokenizer(eqStr2), tokenizer(eqStr3)]
            token_string, _, _ = operation(tokens[0], tokens[1], tokens[2],
                                           wrtVar)
            return removeSpaces(token_string)
        elif (inp.count(';') == 1):
            afterSplit = inp.split(';')
            eqStr1 = afterSplit[0]
            eqStr2 = afterSplit[1]
            tokens = [tokenizer(eqStr1), tokenizer(eqStr2)]
            _, _, token_string, _, _ = operation(tokens[0], tokens[1])
            return removeSpaces(token_string)
        else:
            lhs, rhs = getLHSandRHS(tokenizer(inp))
            _, inpType = checkTypes(lhs, rhs)
            if inpType == "equation":
                if wrtVar is not None:
                    _, _, _, token_string, _, _ = operation(lhs, rhs, wrtVar)
                else:
                    _, _, _, token_string, _, _ = operation(lhs, rhs)
            elif inpType == "expression":
                if wrtVar is not None:
                    _, _, token_string, _, _ = operation(lhs, wrtVar)
                else:
                    _, _, token_string, _, _ = operation(lhs)
    else:
        sampleSpaceObject = sampleSpace(inp)
        token_string, _, _ = operation(sampleSpaceObject)
    output = removeSpaces(token_string)
    return output
Example #5
0
 def calluser():
     availableOperations = []
     tokenString = ''
     equationTokens = []
     self.resultOut = True
     if name == 'addition':
         if self.solutionType == 'expression':
             self.tokens, availableOperations, tokenString, equationTokens, comments = addition(
                 self.tokens, True)
         else:
             self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = additionEquation(
                 self.lTokens, self.rTokens, True)
     elif name == 'subtraction':
         if self.solutionType == 'expression':
             self.tokens, availableOperations, tokenString, equationTokens, comments = subtraction(
                 self.tokens, True)
         else:
             self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = subtractionEquation(
                 self.lTokens, self.rTokens, True)
     elif name == 'multiplication':
         if self.solutionType == 'expression':
             self.tokens, availableOperations, tokenString, equationTokens, comments = multiplication(
                 self.tokens, True)
         else:
             self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = multiplicationEquation(
                 self.lTokens, self.rTokens, True)
     elif name == 'division':
         if self.solutionType == 'expression':
             self.tokens, availableOperations, tokenString, equationTokens, comments = division(
                 self.tokens, True)
         else:
             self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = divisionEquation(
                 self.lTokens, self.rTokens, True)
     elif name == 'simplify':
         if self.solutionType == 'expression':
             self.tokens, availableOperations, tokenString, equationTokens, comments = simplify(
                 self.tokens)
         else:
             self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = simplifyEquation(
                 self.lTokens, self.rTokens)
     elif name == 'factorize':
         self.tokens, availableOperations, tokenString, equationTokens, comments = factorize(
             self.tokens)
     elif name == 'find roots':
         self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = quadraticRoots(
             self.lTokens, self.rTokens)
     elif name == 'solve':
         lhs, rhs = getLHSandRHS(self.tokens)
         variables = getVariables(lhs, rhs)
         self.wrtVariableButtons(variables, name)
         self.resultOut = False
     elif name == 'integrate':
         lhs, rhs = getLHSandRHS(self.tokens)
         variables = getVariables(lhs, rhs)
         self.wrtVariableButtons(variables, name)
         self.resultOut = False
     elif name == 'differentiate':
         lhs, rhs = getLHSandRHS(self.tokens)
         variables = getVariables(lhs, rhs)
         self.wrtVariableButtons(variables, name)
         self.resultOut = False
     if self.resultOut:
         self.eqToks = equationTokens
         self.output = resultLatex(name, equationTokens, comments)
         if len(availableOperations) == 0:
             self.clearButtons()
         else:
             self.refreshButtons(availableOperations)
         if self.mode == 'normal':
             self.textedit.setText(tokenString)
         elif self.mode == 'interaction':
             cursor = self.textedit.textCursor()
             cursor.insertText(tokenString)
         if self.showStepByStep is True:
             showSteps(self)
         if self.showPlotter is True:
             plot(self)
Example #6
0
    def interactionMode(self):
        self.enableQSolver = False
        showQSolve(self, self.enableQSolver)
        cursor = self.textedit.textCursor()
        interactionText = cursor.selectedText()
        if str(interactionText) == '':
            self.mode = 'normal'
            self.input = str(self.textedit.toPlainText())
        else:
            self.input = str(interactionText)
            self.mode = 'interaction'
        showbuttons = True
        if len(self.input) == 0:
            self.input = '0'
            QMessageBox.information(
                self, "Message",
                "No input is given. please enter some expression.")
            showbuttons = False

        self.tokens = tokenizer(self.input)

        self.addEquation()
        lhs, rhs = getLHSandRHS(self.tokens)
        self.lTokens = lhs
        self.rTokens = rhs
        operations, self.solutionType = checkTypes(lhs, rhs)
        if isinstance(operations, list) and showbuttons:
            opButtons = []
            if len(operations) > 0:
                if len(operations) == 1:
                    if operations[0] not in [
                            'integrate', 'differentiate', 'find roots',
                            'factorize'
                    ]:
                        opButtons = ['simplify']
                else:
                    opButtons = ['simplify']
            for operation in operations:
                if operation == '+':
                    opButtons.append("addition")
                elif operation == '-':
                    opButtons.append("subtraction")
                elif operation == '*':
                    opButtons.append("multiplication")
                elif operation == '/':
                    opButtons.append("division")
                else:
                    opButtons.append(operation)

            if self.buttonSet:
                for i in reversed(range(self.solutionOptionsBox.count())):
                    self.solutionOptionsBox.itemAt(i).widget().setParent(None)
                for i in range(int(len(opButtons) / 2) + 1):
                    for j in range(2):
                        if len(opButtons) > (i * 2 + j):
                            self.solutionButtons[(i,
                                                  j)] = QtWidgets.QPushButton(
                                                      opButtons[i * 2 + j])
                            self.solutionButtons[(i, j)].resize(100, 100)
                            self.solutionButtons[(i, j)].clicked.connect(
                                self.onSolvePress(opButtons[i * 2 + j]))
                            self.solutionOptionsBox.addWidget(
                                self.solutionButtons[(i, j)], i, j)
            else:
                self.bottomButton.setParent(None)
                self.solutionWidget = QWidget()
                for i in range(int(len(opButtons) / 2) + 1):
                    for j in range(2):
                        if len(opButtons) > (i * 2 + j):
                            self.solutionButtons[(i,
                                                  j)] = QtWidgets.QPushButton(
                                                      opButtons[i * 2 + j])
                            self.solutionButtons[(i, j)].resize(100, 100)
                            self.solutionButtons[(i, j)].clicked.connect(
                                self.onSolvePress(opButtons[i * 2 + j]))
                            self.solutionOptionsBox.addWidget(
                                self.solutionButtons[(i, j)], i, j)
                self.solutionWidget.setLayout(self.solutionOptionsBox)
                self.buttonSplitter.addWidget(self.solutionWidget)
                self.buttonSet = True
Example #7
0
def commandExec(command):
    operation = command.split('(', 1)[0]
    inputEquation = command.split('(', 1)[1][:-1]
    if ',' in inputEquation:
        varName = inputEquation.split(',')[1]
        inputEquation = inputEquation.split(',')[0]

    lhs = []
    rhs = []
    solutionType = ''
    lTokens = []
    rTokens = []
    equationTokens = []
    comments = []

    tokens = tokenizer(inputEquation)
    lhs, rhs = getLHSandRHS(tokens)
    lTokens = lhs
    rTokens = rhs
    _, solutionType = checkTypes(lhs, rhs)

    if operation == 'simplify':
        if solutionType == 'expression':
            tokens, _, _, equationTokens, comments = simplify(tokens)
        else:
            lTokens, rTokens, _, _, equationTokens, comments = simplifyEquation(
                lTokens, rTokens)
    elif operation == 'addition':
        if solutionType == 'expression':
            tokens, _, _, equationTokens, comments = addition(tokens, True)
        else:
            lTokens, rTokens, _, _, equationTokens, comments = additionEquation(
                lTokens, rTokens, True)
    elif operation == 'subtraction':
        if solutionType == 'expression':
            tokens, _, _, equationTokens, comments = subtraction(tokens, True)
        else:
            lTokens, rTokens, _, _, equationTokens, comments = subtractionEquation(
                lTokens, rTokens, True)
    elif operation == 'multiplication':
        if solutionType == 'expression':
            tokens, _, _, equationTokens, comments = multiplication(
                tokens, True)
        else:
            lTokens, rTokens, _, _, equationTokens, comments = multiplicationEquation(
                lTokens, rTokens, True)
    elif operation == 'division':
        if solutionType == 'expression':
            tokens, _, _, equationTokens, comments = division(tokens, True)
        else:
            lTokens, rTokens, _, _, equationTokens, comments = divisionEquation(
                lTokens, rTokens, True)
    elif operation == 'simplify':
        if solutionType == 'expression':
            tokens, _, _, equationTokens, comments = simplify(tokens)
        else:
            lTokens, rTokens, _, _, equationTokens, comments = simplifyEquation(
                lTokens, rTokens)
    elif operation == 'factorize':
        tokens, _, _, equationTokens, comments = factorize(tokens)
    elif operation == 'find-roots':
        lTokens, rTokens, _, _, equationTokens, comments = quadraticRoots(
            lTokens, rTokens)
    elif operation == 'solve':
        lhs, rhs = getLHSandRHS(tokens)
        lTokens, rTokens, _, _, equationTokens, comments = solveFor(
            lTokens, rTokens, varName)
    elif operation == 'integrate':
        lhs, rhs = getLHSandRHS(tokens)
        lTokens, _, _, equationTokens, comments = integrate(lTokens, varName)
    elif operation == 'differentiate':
        lhs, rhs = getLHSandRHS(tokens)
        lTokens, _, _, equationTokens, comments = differentiate(
            lTokens, varName)
    printOnCLI(equationTokens, operation, comments)
Example #8
0
        def calluser():
            availableOperations = []
            tokenString = ''
            equationTokens = []
            self.input = str(self.textedit.toPlainText())
            if varName == 'back':
                if self.input[0:4] == 'mat_':
                    self.input = self.input[4:]
                    self.input = self.input[0:-1]
                    self.input = self.input[1:]
                if ';' in self.input:
                    self.simul = True
                    if (self.input.count(';') == 2):
                        afterSplit = self.input.split(';')
                        eqStr1 = afterSplit[0]
                        eqStr2 = afterSplit[1]
                        eqStr3 = afterSplit[2]
                    elif (self.input.count(';') == 1):
                        afterSplit = self.input.split(';')
                        eqStr1 = afterSplit[0]
                        eqStr2 = afterSplit[1]
                        eqStr3 = ''
                if self.simul:
                    self.tokens = [tokenizer(eqStr1), tokenizer(eqStr2), tokenizer(eqStr3)]
                else:
                    self.tokens = tokenizer(self.input)
                    # DBP: print(self.tokens)
                    self.addEquation()
                    lhs, rhs = getLHSandRHS(self.tokens)
                    self.lTokens = lhs
                    self.rTokens = rhs
                    operations, self.solutionType = checkTypes(lhs, rhs)
                    self.refreshButtons(operations)

            else:
                if operation == 'solve':
                    if not self.simul:
                        self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = solveFor(self.lTokens, self.rTokens, varName)
                    else:
                        tokenString, equationTokens, comments = simulSolver(self.tokens[0], self.tokens[1], self.tokens[2], varName)
                elif operation == 'integrate':
                    self.lTokens, availableOperations, tokenString, equationTokens, comments = integrate(self.lTokens, varName)

                elif operation == 'differentiate':
                    self.lTokens, availableOperations, tokenString, equationTokens, comments = differentiate(self.lTokens, varName)

                self.eqToks = equationTokens
                renderQuickSol(self, tokenString, self.showQSolver)
                self.output = resultLatex(equationTokens, operation, comments, self.solutionType, self.simul, varName)

                if len(availableOperations) == 0:
                    self.clearButtons()
                else:
                    self.refreshButtons(availableOperations)
                if self.mode == 'normal':
                    self.textedit.setText(tokenString)
                elif self.mode == 'interaction':
                    cursor = self.textedit.textCursor()
                    cursor.insertText(tokenString)
                if self.showStepByStep is True:
                    showSteps(self)
                if self.showPlotter is True:
                    plot(self)
Example #9
0
        def calluser():
            availableOperations = []
            tokenString = ''
            equationTokens = []
            self.resultOut = True
            if not self.matrix:
                """
                This part handles the cases when VisMa is NOT dealing with matrices.

                Boolean flags used in code below:
                simul -- {True} when VisMa is dealing with simultaneous equations & {False} in all other cases
                """
                if name == 'addition':
                    if self.solutionType == 'expression':
                        self.tokens, availableOperations, tokenString, equationTokens, comments = addition(
                            self.tokens, True)
                    else:
                        self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = additionEquation(
                            self.lTokens, self.rTokens, True)
                elif name == 'subtraction':
                    if self.solutionType == 'expression':
                        self.tokens, availableOperations, tokenString, equationTokens, comments = subtraction(
                            self.tokens, True)
                    else:
                        self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = subtractionEquation(
                            self.lTokens, self.rTokens, True)
                elif name == 'multiplication':
                    if self.solutionType == 'expression':
                        self.tokens, availableOperations, tokenString, equationTokens, comments = multiplication(
                            self.tokens, True)
                    else:
                        self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = multiplicationEquation(
                            self.lTokens, self.rTokens, True)
                elif name == 'division':
                    if self.solutionType == 'expression':
                        self.tokens, availableOperations, tokenString, equationTokens, comments = division(
                            self.tokens, True)
                    else:
                        self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = divisionEquation(
                            self.lTokens, self.rTokens, True)
                elif name == 'simplify':
                    if self.solutionType == 'expression':
                        self.tokens, availableOperations, tokenString, equationTokens, comments = simplify(self.tokens)
                    else:
                        self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = simplifyEquation(self.lTokens, self.rTokens)
                elif name == 'factorize':
                    self.tokens, availableOperations, tokenString, equationTokens, comments = factorize(self.tokens)
                elif name == 'find roots':
                    self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = rootFinder(self.lTokens, self.rTokens)
                elif name == 'solve':
                    if not self.simul:
                        lhs, rhs = getLHSandRHS(self.tokens)
                        variables = getVariables(lhs, rhs)
                    else:
                        variables = getVariableSim(self.tokens)
                    self.wrtVariableButtons(variables, name)
                    self.resultOut = False
                elif name == 'factorial':
                    self.tokens, availableOperations, tokenString, equationTokens, comments = factorial(self.tokens)
                elif name == 'combination':
                    nTokens = self.tokens[0]
                    rTokens = self.tokens[1]
                    self.tokens, _, _, equationTokens, comments = combination(nTokens, rTokens)
                elif name == 'permutation':
                    nTokens = self.tokens[0]
                    rTokens = self.tokens[1]
                    self.tokens, _, _, equationTokens, comments = permutation(nTokens, rTokens)
                elif name == 'integrate':
                    lhs, rhs = getLHSandRHS(self.tokens)
                    variables = getVariables(lhs, rhs)
                    self.wrtVariableButtons(variables, name)
                    self.resultOut = False
                elif name == 'differentiate':
                    lhs, rhs = getLHSandRHS(self.tokens)
                    variables = getVariables(lhs, rhs)
                    self.wrtVariableButtons(variables, name)
                    self.resultOut = False
            else:
                """
                This part handles the cases when VisMa is dealing with matrices.

                Boolean flags used in code below:
                dualOperand -- {True} when the matrix operations require two operands (used in operations like addition, subtraction etc)
                nonMatrixResult -- {True} when the result after performing operations on the Matrix is not a Matrix (in operations like Determinant, Trace etc.)
                scalarOperations -- {True} when one of the operand in a scalar (used in operations like Scalar Addition, Scalar Subtraction etc.)
                """
                #   TODO: use latex tools like /amsmath for displaying matrices
                if self.dualOperandMatrix:
                    Matrix1_copy = copy.deepcopy(self.Matrix1)
                    Matrix2_copy = copy.deepcopy(self.Matrix2)
                else:
                    Matrix0_copy = copy.deepcopy(self.Matrix0)
                if name == 'Addition':
                    MatrixResult = addMatrix(self.Matrix1, self.Matrix2)
                elif name == 'Subtraction':
                    MatrixResult = subMatrix(self.Matrix1, self.Matrix2)
                elif name == 'Multiply':
                    MatrixResult = multiplyMatrix(self.Matrix1, self.Matrix2)
                elif name == 'Simplify':
                    MatrixResult = simplifyMatrix(self.Matrix0)
                elif name == 'Trace':
                    sqMatrix = SquareMat()
                    sqMatrix.value = self.Matrix0.value
                    result = sqMatrix.traceMat()
                elif name == 'Determinant':
                    sqMatrix = SquareMat()
                    sqMatrix.value = self.Matrix0.value
                    result = sqMatrix.determinant()
                elif name == 'Inverse':
                    sqMatrix = SquareMat()
                    sqMatrix.value = self.Matrix0.value
                    MatrixResult = SquareMat()
                    MatrixResult = sqMatrix.inverse()
                if name in ['Addition', 'Subtraction', 'Multiply']:
                    self.dualOperandMatrix = True
                else:
                    self.dualOperandMatrix = False
                if name in ['Determinant', 'Trace']:
                    self.nonMatrixResult = True
                else:
                    self.nonMatrixResult = False
            if self.resultOut:
                if not self.matrix:
                    self.eqToks = equationTokens
                    self.output = resultLatex(equationTokens, name, comments, self.solutionType)
                    if (mathError(self.eqToks[-1])):
                        self.output += 'Math Error: LHS not equal to RHS' + '\n'
                    if len(availableOperations) == 0:
                        self.clearButtons()
                    else:
                        self.refreshButtons(availableOperations)
                    if self.mode == 'normal':
                        self.textedit.setText(tokenString)
                    elif self.mode == 'interaction':
                        cursor = self.textedit.textCursor()
                        cursor.insertText(tokenString)
                    if self.showStepByStep is True:
                        showSteps(self)
                    if self.showPlotter is True:
                        plot(self)
                else:
                    if self.dualOperandMatrix:
                        if not self.scalarOperationsMatrix:
                            self.output = resultMatrixStringLatex(operation=name, operand1=Matrix1_copy, operand2=Matrix2_copy, result=MatrixResult)
                        else:
                            # TODO: Implement Scalar Matrices operations.
                            pass
                            # finalCLIstring = resultMatrix_Latex(operation=name, operand1=scalarTokens_copy, operand2=Matrix2_copy, result=MatrixResult)
                    else:
                        if self.nonMatrixResult:
                            self.output = resultMatrixStringLatex(operation=name, operand1=Matrix0_copy, nonMatrixResult=True, result=result)
                        else:
                            self.output = resultMatrixStringLatex(operation=name, operand1=Matrix0_copy, result=MatrixResult)
                    if self.mode == 'normal':
                        self.textedit.setText(tokenString)
                    elif self.mode == 'interaction':
                        cursor = self.textedit.textCursor()
                        cursor.insertText(tokenString)
                    if self.showStepByStep is True:
                        showSteps(self)
Example #10
0
    def interactionMode(self):
        if not self.matrix:
            self.enableQSolver = False
            renderQuickSol(self, self.qSol, self.enableQSolver)
        cursor = self.textedit.textCursor()
        interactionText = cursor.selectedText()
        if str(interactionText) == '':
            self.mode = 'normal'
            self.input = str(self.textedit.toPlainText())
        else:
            self.input = str(interactionText)
            self.mode = 'interaction'
        showbuttons = True
        if len(self.input) == 0:
            return self.warning("No input given!")
        self.simul = False
        self.combi = False
        self.matrix = False
        self.dualOperandMatrix = False
        self.scalarOperationsMatrix = False
        self.nonMatrixResult = False
        if self.input[0:4] == 'mat_':
            self.input = self.input[4:]
            self.input = self.input[0:-1]
            self.input = self.input[1:]
            self.matrix = True
        if not self.matrix:
            if ';' in self.input:
                self.simul = True
                if (self.input.count(';') == 2):
                    afterSplit = self.input.split(';')
                    eqStr1 = afterSplit[0]
                    eqStr2 = afterSplit[1]
                    eqStr3 = afterSplit[2]
                elif (self.input.count(';') == 1):
                    self.combi = True
                    afterSplit = self.input.split(';')
                    eqStr1 = afterSplit[0]
                    eqStr2 = afterSplit[1]
                    eqStr3 = ''
            if self.simul:
                self.tokens = [tokenizer(eqStr1), tokenizer(eqStr2), tokenizer(eqStr3)]
                self.addEquation()
                operations = ['solve']
                if self.combi:
                    operations.extend(['combination', 'permutation'])
                self.solutionType = 'equation'
            else:
                self.tokens = tokenizer(self.input)
                # DBP: print(self.tokens)
                self.addEquation()
                lhs, rhs = getLHSandRHS(self.tokens)
                self.lTokens = lhs
                self.rTokens = rhs
                operations, self.solutionType = checkTypes(lhs, rhs)
            if isinstance(operations, list) and showbuttons:
                opButtons = []
                if len(operations) > 0:
                    if len(operations) == 1:
                        if (operations[0] not in ['integrate', 'differentiate', 'find roots', 'factorize']) and (not self.simul):
                            opButtons = ['simplify']
                    else:
                        opButtons = ['simplify']
                for operation in operations:
                    if operation == '+':
                        opButtons.append("addition")
                    elif operation == '-':
                        opButtons.append("subtraction")
                    elif operation == '*':
                        opButtons.append("multiplication")
                    elif operation == '/':
                        opButtons.append("division")
                    else:
                        opButtons.append(operation)
        else:
            if ',' in self.input:
                self.dualOperandMatrix = True
                [inputEquation1, inputEquation2] = self.input.split(', ')
                if '[' in inputEquation1:
                    inputEquation1 = inputEquation1[1:][:-1]
                    inputEquation1 = inputEquation1.split('; ')
                    matrixOperand1 = []
                    for row in inputEquation1:
                        row1 = row.split(' ')
                        for i, _ in enumerate(row1):
                            row1[i] = tokenizer(row1[i])
                        matrixOperand1.append(row1)
                    self.Matrix1 = Matrix()
                    self.Matrix1.value = matrixOperand1
                    inputEquation2 = inputEquation2[1:][:-1]
                    inputEquation2 = inputEquation2.split('; ')
                    matrixOperand2 = []
                    for row in inputEquation2:
                        row1 = row.split(' ')
                        for i, _ in enumerate(row1):
                            row1[i] = tokenizer(row1[i])
                        matrixOperand2.append(row1)
                    self.Matrix2 = Matrix()
                    self.Matrix2.value = matrixOperand2
                else:
                    self.scalarOperationsMatrix = True
                    inputEquation2 = inputEquation2[1:][:-1]
                    inputEquation2 = inputEquation2.split('; ')
                    matrixOperand2 = []
                    for row in inputEquation2:
                        row1 = row.split(' ')
                        for i, _ in enumerate(row1):
                            row1[i] = tokenizer(row1[i])
                        matrixOperand2.append(row1)
                    self.Matrix2 = Matrix()
                    self.Matrix2.value = matrixOperand2
            else:
                self.dualOperandMatrix = False
                inputEquation = self.input[:-2]
                inputEquation = inputEquation[:-1][1:]
                inputEquation = inputEquation.split('; ')
                matrixOperand = []
                for row in inputEquation:
                    row1 = row.split(' ')
                    for i, _ in enumerate(row1):
                        row1[i] = tokenizer(row1[i])
                    matrixOperand.append(row1)
                self.Matrix0 = Matrix()
                self.Matrix0.value = matrixOperand

            opButtons = []
            if ',' in self.input:
                opButtons.extend(['Addition', 'Subtraction', 'Multiply'])
            else:
                opButtons.extend(['Determinant', 'Trace', 'Inverse'])

        if self.buttonSet:
            for i in reversed(range(self.solutionOptionsBox.count())):
                self.solutionOptionsBox.itemAt(i).widget().setParent(None)
            for i in range(int(len(opButtons) / 2) + 1):
                for j in range(2):
                    if len(opButtons) > (i * 2 + j):
                        self.solutionButtons[(i, j)] = QtWidgets.QPushButton(
                            opButtons[i * 2 + j])
                        self.solutionButtons[(i, j)].resize(100, 100)
                        self.solutionButtons[(i, j)].clicked.connect(
                            self.onSolvePress(opButtons[i * 2 + j]))
                        self.solutionOptionsBox.addWidget(
                            self.solutionButtons[(i, j)], i, j)
        else:
            self.bottomButton.setParent(None)
            self.solutionWidget = QWidget()
            for i in range(int(len(opButtons) / 2) + 1):
                for j in range(2):
                    if len(opButtons) > (i * 2 + j):
                        self.solutionButtons[(i, j)] = QtWidgets.QPushButton(
                            opButtons[i * 2 + j])
                        self.solutionButtons[(i, j)].resize(100, 100)
                        self.solutionButtons[(i, j)].clicked.connect(
                            self.onSolvePress(opButtons[i * 2 + j]))
                        self.solutionOptionsBox.addWidget(
                            self.solutionButtons[(i, j)], i, j)
            self.solutionWidget.setLayout(self.solutionOptionsBox)
            self.buttonSplitter.addWidget(self.solutionWidget)
            self.buttonSet = True
Example #11
0
def commandExec(command):
    operation = command.split('(', 1)[0]
    inputEquation = command.split('(', 1)[1][:-1]
    matrix = False  # True when matrices operations are present in the code.
    if operation[0:4] == 'mat_':
        matrix = True

    if not matrix:
        """
        This part handles the cases when VisMa is NOT dealing with matrices.

        Boolean flags used in code below:
        simul -- {True} when VisMa is dealing with simultaneous equations & {False} in all other cases
        """
        varName = None
        if ',' in inputEquation:
            varName = inputEquation.split(',')[1]
            varName = "".join(varName.split())
            inputEquation = inputEquation.split(',')[0]

        simul = False  # True when simultaneous equation is present
        if (inputEquation.count(';') == 2) and (operation == 'solve'):
            simul = True
            afterSplit = inputEquation.split(';')
            eqStr1 = afterSplit[0]
            eqStr2 = afterSplit[1]
            eqStr3 = afterSplit[2]

        lhs = []
        rhs = []
        solutionType = ''
        lTokens = []
        rTokens = []
        equationTokens = []
        comments = []
        if simul:
            tokens = [tokenizer(eqStr1), tokenizer(eqStr2), tokenizer(eqStr3)]
        else:
            tokens = tokenizer(inputEquation)
            if '=' in inputEquation:
                lhs, rhs = getLHSandRHS(tokens)
                lTokens = lhs
                rTokens = rhs
                _, solutionType = checkTypes(lhs, rhs)
            else:
                solutionType = 'expression'
                lhs, rhs = getLHSandRHS(tokens)
                lTokens = lhs
                rTokens = rhs

        if operation == 'plot':
            app = QApplication(sys.argv)
            App(tokens)
            sys.exit(app.exec_())
        elif operation == 'simplify':
            if solutionType == 'expression':
                tokens, _, _, equationTokens, comments = simplify(tokens)
            else:
                lTokens, rTokens, _, _, equationTokens, comments = simplifyEquation(
                    lTokens, rTokens)
        elif operation == 'addition':
            if solutionType == 'expression':
                tokens, _, _, equationTokens, comments = addition(tokens, True)
            else:
                lTokens, rTokens, _, _, equationTokens, comments = additionEquation(
                    lTokens, rTokens, True)
        elif operation == 'subtraction':
            if solutionType == 'expression':
                tokens, _, _, equationTokens, comments = subtraction(
                    tokens, True)
            else:
                lTokens, rTokens, _, _, equationTokens, comments = subtractionEquation(
                    lTokens, rTokens, True)
        elif operation == 'multiplication':
            if solutionType == 'expression':
                tokens, _, _, equationTokens, comments = multiplication(
                    tokens, True)
            else:
                lTokens, rTokens, _, _, equationTokens, comments = multiplicationEquation(
                    lTokens, rTokens, True)
        elif operation == 'division':
            if solutionType == 'expression':
                tokens, _, _, equationTokens, comments = division(tokens, True)
            else:
                lTokens, rTokens, _, _, equationTokens, comments = divisionEquation(
                    lTokens, rTokens, True)
        elif operation == 'factorize':
            tokens, _, _, equationTokens, comments = factorize(tokens)
        elif operation == 'find-roots':
            lTokens, rTokens, _, _, equationTokens, comments = rootFinder(
                lTokens, rTokens)
        elif operation == 'solve':
            if simul:
                if varName is not None:
                    _, equationTokens, comments = simulSolver(
                        tokens[0], tokens[1], tokens[2], varName)
                else:
                    _, equationTokens, comments = simulSolver(
                        tokens[0], tokens[1], tokens[2])
                solutionType = equationTokens
            else:
                lhs, rhs = getLHSandRHS(tokens)
                lTokens, rTokens, _, _, equationTokens, comments = solveFor(
                    lTokens, rTokens, varName)
        elif operation == 'factorial':
            tokens, _, _, equationTokens, comments = factorial(tokens)
        elif operation == 'combination':
            n = tokenizer(inputEquation)
            r = tokenizer(varName)
            tokens, _, _, equationTokens, comments = combination(n, r)
        elif operation == 'permutation':
            n = tokenizer(inputEquation)
            r = tokenizer(varName)
            tokens, _, _, equationTokens, comments = permutation(n, r)
        elif operation == 'integrate':
            lhs, rhs = getLHSandRHS(tokens)
            lTokens, _, _, equationTokens, comments = integrate(
                lTokens, varName)
        elif operation == 'differentiate':
            lhs, rhs = getLHSandRHS(tokens)
            lTokens, _, _, equationTokens, comments = differentiate(
                lTokens, varName)
        if operation != 'plot':
            # FIXME: when either plotting window or GUI window is opened from CLI and after it is closed entire CLI exits, it would be better if it is avoided
            final_string = resultStringCLI(equationTokens, operation, comments,
                                           solutionType, simul)
            print(final_string)
    else:
        """
        This part handles the cases when VisMa is dealing with matrices.

        Boolean flags used in code below:
        dualOperand -- {True} when the matrix operations require two operands (used in operations like addition, subtraction etc)
        nonMatrixResult -- {True} when the result after performing operations on the Matrix is not a Matrix (in operations like Determinant, Trace etc.)
        scalarOperations -- {True} when one of the operand in a scalar (used in operations like Scalar Addition, Scalar Subtraction etc.)
        """
        operation = operation[4:]
        dualOperand = False
        nonMatrixResult = False
        scalarOperations = False
        if ', ' in inputEquation:
            dualOperand = True
            [inputEquation1, inputEquation2] = inputEquation.split(', ')
            if '[' in inputEquation1:
                inputEquation1 = inputEquation1[1:][:-1]
                inputEquation1 = inputEquation1.split('; ')
                matrixOperand1 = []
                for row in inputEquation1:
                    row1 = row.split(' ')
                    for i, _ in enumerate(row1):
                        row1[i] = tokenizer(row1[i])
                    matrixOperand1.append(row1)
                Matrix1 = Matrix()
                Matrix1.value = matrixOperand1
                inputEquation2 = inputEquation2[1:][:-1]
                inputEquation2 = inputEquation2.split('; ')
                matrixOperand2 = []
                for row in inputEquation2:
                    row1 = row.split(' ')
                    for i, _ in enumerate(row1):
                        row1[i] = tokenizer(row1[i])
                    matrixOperand2.append(row1)
                Matrix2 = Matrix()
                Matrix2.value = matrixOperand2
                Matrix1_copy = copy.deepcopy(Matrix1)
                Matrix2_copy = copy.deepcopy(Matrix2)
            else:
                scalarOperations = True
                scalar = inputEquation1
                scalarTokens = scalar
                # scalarTokens = tokenizer(scalar)
                inputEquation2 = inputEquation2[1:][:-1]
                inputEquation2 = inputEquation2.split('; ')
                matrixOperand2 = []
                for row in inputEquation2:
                    row1 = row.split(' ')
                    for i, _ in enumerate(row1):
                        row1[i] = tokenizer(row1[i])
                    matrixOperand2.append(row1)
                Matrix2 = Matrix()
                Matrix2.value = matrixOperand2
                scalarTokens_copy = copy.deepcopy(scalarTokens)
                Matrix2_copy = copy.deepcopy(Matrix2)

        else:
            inputEquation = inputEquation[1:][:-1]
            inputEquation = inputEquation.split('; ')

            matrixOperand = []
            for row in inputEquation:
                row1 = row.split(' ')
                for i, _ in enumerate(row1):
                    row1[i] = tokenizer(row1[i])
                matrixOperand.append(row1)

            Matrix0 = Matrix()
            Matrix0.value = matrixOperand
            Matrix0_copy = copy.deepcopy(Matrix0)
        if operation == 'simplify':
            MatrixResult = simplifyMatrix(Matrix0)
        elif operation == 'add':
            MatrixResult = addMatrix(Matrix1, Matrix2)
        elif operation == 'sub':
            MatrixResult = subMatrix(Matrix1, Matrix2)
        elif operation == 'mult':
            MatrixResult = multiplyMatrix(Matrix1, Matrix2)
        elif operation == 'determinant':
            nonMatrixResult = True
            sqMatrix = SquareMat()
            sqMatrix.value = Matrix0.value
            result = sqMatrix.determinant()
        elif operation == 'trace':
            nonMatrixResult = True
            sqMatrix = SquareMat()
            sqMatrix.value = Matrix0.value
            result = sqMatrix.traceMat()
        elif operation == 'inverse':
            sqMatrix = SquareMat()
            sqMatrix.value = Matrix0.value
            MatrixResult = SquareMat()
            MatrixResult = sqMatrix.inverse()

        finalCLIstring = ''
        if dualOperand:
            if not scalarOperations:
                finalCLIstring = resultMatrixString(operation=operation,
                                                    operand1=Matrix1_copy,
                                                    operand2=Matrix2_copy,
                                                    result=MatrixResult)
            else:
                finalCLIstring = resultMatrixString(operation=operation,
                                                    operand1=scalarTokens_copy,
                                                    operand2=Matrix2_copy,
                                                    result=MatrixResult)
        else:
            if nonMatrixResult:
                finalCLIstring = resultMatrixString(operation=operation,
                                                    operand1=Matrix0_copy,
                                                    nonMatrixResult=True,
                                                    result=result)
            else:
                finalCLIstring = resultMatrixString(operation=operation,
                                                    operand1=Matrix0_copy,
                                                    result=MatrixResult)
        print(finalCLIstring)