class LassoSelectionMode(VispyMouseMode): icon = 'glue_lasso' tool_id = 'vispy:lasso' action_text = 'Select data using a lasso selection' def __init__(self, viewer): super(LassoSelectionMode, self).__init__(viewer) self.line = Line(color='purple', width=2, method='agg', parent=self._vispy_widget.canvas.scene) def activate(self): self.reset() def reset(self): self.line_pos = [] self.line.set_data(np.zeros((0, 2), dtype=float)) self.line.parent = None def press(self, event): if event.button == 1: self.line_pos.append(event.pos) def move(self, event): if event.button == 1 and event.is_dragging: self.line_pos.append(event.pos) self.line.set_data(np.array(self.line_pos, dtype=float)) self.line.parent = self._vispy_widget.canvas.scene def release(self, event): if event.button == 1: if len(self.line_pos) > 0: vx, vy = np.array(self.line_pos).transpose() roi = Projected3dROI(roi_2d=PolygonalROI(vx, vy), projection_matrix=self.projection_matrix) self.apply_roi(roi) self.reset() self.viewer.toolbar.active_tool = None
# Here the mesh has a single boundary open_mesh_boundary = stop.mesh_boundary(open_mesh) print(open_mesh_boundary) ############################################################################### # show the result # WARNING : BrainObj should be added first before visb_sc = splt.visbrain_plot(mesh=open_mesh, caption='open mesh') # create points with vispy for bound in open_mesh_boundary: points = open_mesh.vertices[bound] s_rad = SourceObj('rad', points, color='red', symbol='square', radius_min=10) visb_sc.add_to_subplot(s_rad) lines = Line(pos=open_mesh.vertices[bound], width=10, color='b') # wrap the vispy object using visbrain l_obj = VispyObj('line', lines) visb_sc.add_to_subplot(l_obj) visb_sc.preview() ############################################################################### # here is how to get the vertices that define the boundary of # a texture on a mesh # Let us first load example data mesh = sio.load_mesh('../examples/data/example_mesh.gii') # rotate the mesh for better visualization transfo_flip = np.array([[-1, 0, 0, 0],[0, 1, 0, 0],[0, 0, -1, 0], [0, 0, 0, 1]]) mesh.apply_transform(transfo_flip) # Load the example texture and compute its boundary
def __init__(self, parent): super(SignalWidget, self).__init__(parent) # Useful trnascripts self.plugin = self.parent() self.sd = self.plugin.sd self.CONF_SECTION = self.parent().CONF_SECTION # Variables self.measurement_mode = False self.curr_pc = None self.sig_start = None self.sig_stop = None self.spect_type = 'spectrum' # spectrum, spectrogram # General variables self.low_lim = None self.high_lim = None # Sepctrum variables self.mean_filter = None # Setup camera self.signal_camera = SignalCamera() self.spectrum_camera = SignalCamera() self.canvas = scene.SceneCanvas(show=True, keys='interactive', parent=self, bgcolor=CONF.get( self.CONF_SECTION, 'bgcolor')) self.view_grid = self.canvas.central_widget.add_grid(margin=10) # Signal self.signal_view = self.view_grid.add_view(row=0, col=1, row_span=2, camera=self.signal_camera) axis_color = CONF.get(self.CONF_SECTION, 'axis_color') self.signal_yaxis = AxisWidget(orientation='left', axis_label='Amplitude', axis_font_size=12, tick_label_margin=5, axis_color=axis_color, tick_color=axis_color, text_color=axis_color) self.signal_yaxis.width_max = 60 self.view_grid.add_widget(self.signal_yaxis, row=0, col=0, row_span=2) self.signal_xaxis = scene.AxisWidget(orientation='bottom', axis_label='Time [s]', axis_font_size=12, tick_label_margin=5, axis_color=axis_color, tick_color=axis_color, text_color=axis_color) self.signal_xaxis.height_max = 55 self.view_grid.add_widget(self.signal_xaxis, row=2, col=1) self.signal_yaxis.link_view(self.signal_view) self.signal_xaxis.link_view(self.signal_view) # Spectrum self.spectrum_view = self.view_grid.add_view( row=3, col=1, row_span=2, camera=self.spectrum_camera) self.spectrum_yaxis = AxisWidget(orientation='left', axis_label='Amplitude', axis_font_size=12, tick_label_margin=5, axis_color=axis_color, tick_color=axis_color, text_color=axis_color) self.spectrum_yaxis.width_max = 60 self.view_grid.add_widget(self.spectrum_yaxis, row=3, col=0, row_span=2) self.spectrum_xaxis = scene.AxisWidget(orientation='bottom', axis_label='Frequency [Hz]', axis_font_size=12, axis_color=axis_color, tick_color=axis_color, text_color=axis_color) self.spectrum_xaxis.height_max = 55 self.view_grid.add_widget(self.spectrum_xaxis, row=5, col=1) self.spectrum_yaxis.link_view(self.spectrum_view) self.spectrum_xaxis.link_view(self.spectrum_view) self.signal_line = Line(parent=self.signal_view.scene, width=1) self.spectrum_line = Line(parent=self.spectrum_view.scene, width=1) self.spectrogram = Spectrogram([0], parent=self.spectrum_view.scene) # ----- Set layout ----- # Widget layout layout = QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) layout.addWidget(self.canvas.native) # Set the whole layout self.setLayout(layout)
class SignalWidget(QWidget): def __init__(self, parent): super(SignalWidget, self).__init__(parent) # Useful trnascripts self.plugin = self.parent() self.sd = self.plugin.sd self.CONF_SECTION = self.parent().CONF_SECTION # Variables self.measurement_mode = False self.curr_pc = None self.sig_start = None self.sig_stop = None self.spect_type = 'spectrum' # spectrum, spectrogram # General variables self.low_lim = None self.high_lim = None # Sepctrum variables self.mean_filter = None # Setup camera self.signal_camera = SignalCamera() self.spectrum_camera = SignalCamera() self.canvas = scene.SceneCanvas(show=True, keys='interactive', parent=self, bgcolor=CONF.get( self.CONF_SECTION, 'bgcolor')) self.view_grid = self.canvas.central_widget.add_grid(margin=10) # Signal self.signal_view = self.view_grid.add_view(row=0, col=1, row_span=2, camera=self.signal_camera) axis_color = CONF.get(self.CONF_SECTION, 'axis_color') self.signal_yaxis = AxisWidget(orientation='left', axis_label='Amplitude', axis_font_size=12, tick_label_margin=5, axis_color=axis_color, tick_color=axis_color, text_color=axis_color) self.signal_yaxis.width_max = 60 self.view_grid.add_widget(self.signal_yaxis, row=0, col=0, row_span=2) self.signal_xaxis = scene.AxisWidget(orientation='bottom', axis_label='Time [s]', axis_font_size=12, tick_label_margin=5, axis_color=axis_color, tick_color=axis_color, text_color=axis_color) self.signal_xaxis.height_max = 55 self.view_grid.add_widget(self.signal_xaxis, row=2, col=1) self.signal_yaxis.link_view(self.signal_view) self.signal_xaxis.link_view(self.signal_view) # Spectrum self.spectrum_view = self.view_grid.add_view( row=3, col=1, row_span=2, camera=self.spectrum_camera) self.spectrum_yaxis = AxisWidget(orientation='left', axis_label='Amplitude', axis_font_size=12, tick_label_margin=5, axis_color=axis_color, tick_color=axis_color, text_color=axis_color) self.spectrum_yaxis.width_max = 60 self.view_grid.add_widget(self.spectrum_yaxis, row=3, col=0, row_span=2) self.spectrum_xaxis = scene.AxisWidget(orientation='bottom', axis_label='Frequency [Hz]', axis_font_size=12, axis_color=axis_color, tick_color=axis_color, text_color=axis_color) self.spectrum_xaxis.height_max = 55 self.view_grid.add_widget(self.spectrum_xaxis, row=5, col=1) self.spectrum_yaxis.link_view(self.spectrum_view) self.spectrum_xaxis.link_view(self.spectrum_view) self.signal_line = Line(parent=self.signal_view.scene, width=1) self.spectrum_line = Line(parent=self.spectrum_view.scene, width=1) self.spectrogram = Spectrogram([0], parent=self.spectrum_view.scene) # ----- Set layout ----- # Widget layout layout = QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) layout.addWidget(self.canvas.native) # Set the whole layout self.setLayout(layout) def set_spect_type(self, stype): self.spect_type = stype if stype == 'spectrum': self.spectrum_line.visible = True self.spectrogram.visible = False self.spectrum_xaxis.axis.axis_label = 'Frequency [Hz]' self.spectrum_yaxis.axis.axis_label = 'Amplitude' elif stype == 'spectrogram': self.spectrogram.visible = True self.spectrum_line.visible = False self.spectrum_xaxis.axis.axis_label = 'Time [s]' self.spectrum_yaxis.axis.axis_label = 'Frequency [Hz]' self.update_signals() def recieve_input(self, event): if event.type == 'key_press' and event.key == 'control': self.measurement_mode = True self.sig_start = None self.sig_stop = None elif event.type == 'key_release' and event.key == 'control': self.measurement_mode = False if event.type == 'mouse_press' and self.measurement_mode is True: self.curr_pc = self.sd.curr_pc rect_rel_w_pos = self.sd.rect_rel_w_pos self.sig_start = int(rect_rel_w_pos * len(self.curr_pc.data)) self.spectrogram.fs = self.curr_pc.fsamp if self.curr_pc is not None: if self.curr_pc.fsamp != self.sd.curr_pc.fsamp: self.low_lim = None self.high_lim = None self.curr_pc = self.sd.curr_pc if self.low_lim is None: self.plugin.tools_widget.general_tools \ .low_lim_le.setText('0') self.plugin.tools_widget.general_tools \ .low_lim_le_validator.setRange(0, self.curr_pc.fsamp/2, 1) if self.high_lim is None: self.plugin.tools_widget.general_tools \ .high_lim_le.setText(str(self.curr_pc.fsamp/2)) self.plugin.tools_widget.general_tools \ .high_lim_le_validator.setRange(0, self.curr_pc.fsamp/2, 1) if event.type == 'mouse_move' and self.measurement_mode is True: self.sig_stop = int(self.sd.rect_rel_w_pos * len(self.curr_pc.data)) self.update_signals() def update_signals(self): if self.sig_start is None or self.sig_stop is None: return if self.sig_start < self.sig_stop: data = self.curr_pc.data[self.sig_start:self.sig_stop] elif self.sig_start > self.sig_stop: data = self.curr_pc.data[self.sig_stop:self.sig_start] else: return if len(data) < 2: return # Signal line s_x = 1 / self.curr_pc.fsamp s_y = 1 / (np.max(data) - np.min(data)) s_z = 0 scale = [s_x, 1, 1] # Translate t_x = 0 t_y = -np.min(data) t_z = 0 translate = [t_x, t_y, t_z] transform = STTransform(scale, translate) pos = np.c_[np.arange(len(data)), data] self.signal_line.set_data(pos=pos, color=self.curr_pc.line_color) self.signal_line.transform = transform self.signal_camera.rect = (0, 0), (len(data) * s_x, np.max(data) - np.min(data)) self.signal_camera.limit_rect = self.signal_camera.rect if self.spect_type == 'spectrum': s = np.abs(np.fft.fft(data))[:int(len(data) / 2)] s[0] = 0 freqs = np.fft.fftfreq(data.size, 1 / self.curr_pc.fsamp) freqs = freqs[:int(len(freqs) / 2)] if self.mean_filter is not None and self.mean_filter > 1: s = np.convolve(s, np.ones( (self.mean_filter, )) / self.mean_filter, mode='valid') if self.low_lim is not None: res = np.where(freqs >= self.low_lim)[0] if len(res) > 0: low_lim_idx = res[0] else: low_lim_idx = 0 if self.high_lim is not None: res = np.where(freqs <= self.high_lim)[0] if len(res) > 0: high_lim_idx = res[-1] else: high_lim_idx = len(freqs) s_x = (self.curr_pc.fsamp / 2) / len(s) s_y = 1 s_z = 1 scale = [s_x, s_y, s_z] pos = np.c_[np.arange(len(s)), s] self.spectrum_line.set_data(pos=pos, color=self.curr_pc.line_color) self.spectrum_line.transform = STTransform(scale) # Adjust camera limits pos = (0, 0) size = (freqs[-1], np.max(s)) self.spectrum_camera.limit_rect = pos, size # Adjust camera view freqs = freqs[low_lim_idx:high_lim_idx] if len(freqs) == 0: return pos = (freqs[0], 0) size = (freqs[-1] - freqs[0], np.max(s[low_lim_idx:high_lim_idx])) self.spectrum_camera.rect = pos, size elif self.spect_type == 'spectrogram': self.spectrogram.x = data freqs = self.spectrogram.freqs if self.low_lim is not None: res = np.where(freqs >= self.low_lim)[0] if len(res) > 0: low_lim_idx = res[0] else: low_lim_idx = 0 if self.high_lim is not None: res = np.where(freqs <= self.high_lim)[0] if len(res) > 0: high_lim_idx = res[-1] else: high_lim_idx = len(freqs) n_windows = ( (len(data) - self.spectrogram.n_fft) // self.spectrogram.step + 1) if n_windows == 0 or len(freqs) == 0: return s_x = len(data) / self.curr_pc.fsamp s_y = (self.curr_pc.fsamp / 2) / len(freqs) s_z = 1 scale = [s_x, s_y, s_z] self.spectrogram.transform = STTransform(scale) # Adjust camera view freqs = freqs[low_lim_idx:high_lim_idx - 1] pos = (0, freqs[0]) size = (len(data) / self.curr_pc.fsamp, freqs[-1] - freqs[0]) self.spectrum_camera.rect = pos, size # Adjust camera limits self.spectrum_camera.limit_rect = pos, size
############################################################################### # Generation of an open mesh K = [-1, -1] open_mesh = sps.generate_quadric(K, nstep=[5, 5]) open_mesh_boundary = stop.mesh_boundary(open_mesh) # Visualization visb_sc = splt.visbrain_plot(mesh=open_mesh, caption='open mesh') for bound in open_mesh_boundary: points = open_mesh.vertices[bound] s_rad = SourceObj('rad', points, color='red', symbol='square', radius_min=10) visb_sc.add_to_subplot(s_rad) lines = Line(pos=open_mesh.vertices[bound], width=10, color='b') # wrap the vispy object using visbrain l_obj = VispyObj('line', lines) visb_sc.add_to_subplot(l_obj) visb_sc.preview() ############################################################################### # Mapping onto a planar disk disk_mesh = smap.disk_conformal_mapping(open_mesh) # Visualization visb_sc2 = splt.visbrain_plot(mesh=disk_mesh, caption='disk mesh') for bound in open_mesh_boundary: points = disk_mesh.vertices[bound] s_rad = SourceObj('rad', points, color='red',
def __init__(self, parent): super(SignalDisplay, self).__init__(parent) # Covenience transcripts self.main = self.parent() # Widget behavior self.setAcceptDrops(True) # Plot variables self.sample_map = [] self.plot_containers = [] # TODO: Selected signal plot used for data shifting, colors, etc self.master_pc = None self.master_plot = None # TODO - to be deleted self.curr_pc = None self.rect_rel_w_pos = None self.rect_rel_h_pos = None self.resize_flag = False self.highlight_mode = False self.measurement_mode = False self.autoscale = False self.disconts_processed = False self.data_map = DataMap() self.data_source = sm.ODS self.data_array = None # Widget layout layout = QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) # These variables are assigned in channels plugin self.hidden_channels = None self.visible_channels = None # Setup camera self.camera = SignalCamera() # Autoslide self.slide_worker_stopped = True # TODO: this should be i config self.slide_worker = TimerWorker(1) self.slide_worker_thread = QThread() self.slide_worker.moveToThread(self.slide_worker_thread) self.start_slide_worker.connect(self.slide_worker.run) self.stop_slide_worker.connect(self.slide_worker.interupt) self.slide_worker.time_passed.connect(self.autoslide) self.slide_worker_thread.start() # Vispy canvas self.canvas = scene.SceneCanvas(show=True, keys='interactive', parent=self, bgcolor=CONF.get(self.CONF_SECTION, 'bgcolor')) self.canvas.connect(self.on_key_press) self.canvas.connect(self.on_key_release) self.canvas.connect(self.on_mouse_move) self.canvas.connect(self.on_mouse_press) self.canvas.connect(self.on_mouse_release) self.canvas.connect(self.on_mouse_wheel) self.canvas.connect(self.on_resize) # Timer to let the scene redraw if key is hit self.event_time = time() self.plot_update_done = False # ??? Create two viewboxes - for labels and signals self.signal_view = self.canvas.central_widget.add_view( camera=self.camera) self.cong_discontinuities = None self.color_coding_mode = 0 self.color_palette = CONF.get(self.CONF_SECTION, 'color_palette') self.update_cam_state() # ----- Initial visuals operations----- # TODO - Add crosshair color to CONF # Measurements ch_color = CONF.get(self.CONF_SECTION, 'init_crosshair_color') self.crosshair = Crosshair(parent=self.signal_view.scene, color=hex2rgba(ch_color)) m_color = CONF.get(self.CONF_SECTION, 'init_marker_color') # TODO marker color self.marker = Markers(parent=self.signal_view.scene) self.xaxis = Axis(parent=self.signal_view.scene, tick_direction=(0., 1.), axis_width=1, tick_width=1, anchors=('center', 'top'), axis_color=m_color, tick_color=m_color, text_color=m_color) self.x_tick_spacing = 1000 self.yaxis = Axis(parent=self.signal_view.scene, tick_direction=(1., 0.), axis_width=1, tick_width=1, anchors=('left', 'center'), axis_color=m_color, tick_color=m_color, text_color=m_color) self.y_tick_spacing = 100 self.measure_line = Line(parent=self.signal_view.scene, width=3, color=m_color) # TODO - textbox self.describe_text = Text(anchor_x='left', anchor_y='bottom', parent=self.signal_view.scene, color=m_color) # Signal highlighting self.highlight_rec = Mesh(parent=self.signal_view.scene, color=np.array([0., 0., 0., 0.]), mode='triangle_fan') # Grid self.grid = None # Discontinuity self.disc_marker = LinearRegion(np.array([0, 0]), np.array([[0., 0., 0., 0.], [0., 0., 0., 0.]]), parent=self.signal_view.scene) self.signal_label_dict = {} # Main signal visal with labels w = CONF.get(self.CONF_SECTION, 'init_line_width') self.signal_visual = Multiline(width=w, parent=self.signal_view.scene) self.label_visual = Text(anchor_x='left', anchor_y='top', parent=self.signal_view.scene) # TODO - one set of x and y axes for measurements # ----- Tool bar ----- btn_layout = QHBoxLayout() for btn in self.setup_buttons(): if btn is None: continue btn.setAutoRaise(True) btn.setIconSize(QSize(20, 20)) btn_layout.addWidget(btn) # if options_button: # btn_layout.addStretch() # btn_layout.addWidget(options_button, Qt.AlignRight) # TODO - this is temporary - solve the rendering in different thread select_mode = QComboBox(self) select_mode.insertItems(0, ['Browse', 'Research']) antialias = CONF.get(self.CONF_SECTION, 'antialiasing') if antialias == 'filter': select_mode.setCurrentIndex(0) elif antialias == 'min_max': select_mode.setCurrentIndex(1) select_mode.currentIndexChanged.connect(self.switch_display_mode) btn_layout.addWidget(select_mode) # Color coding color_code = QComboBox(self) color_code.insertItems(0, ['None', 'Channel', 'Group', 'Amplitude']) color_code.currentIndexChanged.connect(self.switch_cc_mode) btn_layout.addWidget(color_code) # Metadata reload button btn_layout.setAlignment(Qt.AlignLeft) layout = create_plugin_layout(btn_layout) # ----- Set layout ----- layout.addWidget(self.canvas.native) # Set the whole layout self.setLayout(layout) # Connect signals self.main.sig_file_opened.connect(self.initialize_data_map) self.main.metadata_reloaded.connect(self.create_conglomerate_disconts) self.plots_changed.connect(self.set_plot_update) self.plots_changed.connect(self.subsample) self.plots_changed.connect(self.rescale_grid) self.input_recieved.connect(self.set_highlight_mode) self.input_recieved.connect(self.show_measure_line) self.canvas_resized.connect(self.update_subsample)
class SignalDisplay(QWidget): # Attributes - tehcnically this is not a plugin but has the same attributes CONF_SECTION = 'signal_display' CONFIGWIDGET_CLASS = None IMG_PATH = 'images' DISABLE_ACTIONS_WHEN_HIDDEN = True shortcut = None # Signals data_map_changed = pyqtSignal(DataMap, name='data_map_changed') plots_changed = pyqtSignal(name='plots_changed') # TODO: This will send a signal to event eveluator in the future input_recieved = pyqtSignal(Event, name='input_recieved') canvas_resized = pyqtSignal(name='canvas_resized') subview_changed = pyqtSignal(name='subview_changed') stop_slide_worker = pyqtSignal() start_slide_worker = pyqtSignal() def __init__(self, parent): super(SignalDisplay, self).__init__(parent) # Covenience transcripts self.main = self.parent() # Widget behavior self.setAcceptDrops(True) # Plot variables self.sample_map = [] self.plot_containers = [] # TODO: Selected signal plot used for data shifting, colors, etc self.master_pc = None self.master_plot = None # TODO - to be deleted self.curr_pc = None self.rect_rel_w_pos = None self.rect_rel_h_pos = None self.resize_flag = False self.highlight_mode = False self.measurement_mode = False self.autoscale = False self.disconts_processed = False self.data_map = DataMap() self.data_source = sm.ODS self.data_array = None # Widget layout layout = QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) # These variables are assigned in channels plugin self.hidden_channels = None self.visible_channels = None # Setup camera self.camera = SignalCamera() # Autoslide self.slide_worker_stopped = True # TODO: this should be i config self.slide_worker = TimerWorker(1) self.slide_worker_thread = QThread() self.slide_worker.moveToThread(self.slide_worker_thread) self.start_slide_worker.connect(self.slide_worker.run) self.stop_slide_worker.connect(self.slide_worker.interupt) self.slide_worker.time_passed.connect(self.autoslide) self.slide_worker_thread.start() # Vispy canvas self.canvas = scene.SceneCanvas(show=True, keys='interactive', parent=self, bgcolor=CONF.get(self.CONF_SECTION, 'bgcolor')) self.canvas.connect(self.on_key_press) self.canvas.connect(self.on_key_release) self.canvas.connect(self.on_mouse_move) self.canvas.connect(self.on_mouse_press) self.canvas.connect(self.on_mouse_release) self.canvas.connect(self.on_mouse_wheel) self.canvas.connect(self.on_resize) # Timer to let the scene redraw if key is hit self.event_time = time() self.plot_update_done = False # ??? Create two viewboxes - for labels and signals self.signal_view = self.canvas.central_widget.add_view( camera=self.camera) self.cong_discontinuities = None self.color_coding_mode = 0 self.color_palette = CONF.get(self.CONF_SECTION, 'color_palette') self.update_cam_state() # ----- Initial visuals operations----- # TODO - Add crosshair color to CONF # Measurements ch_color = CONF.get(self.CONF_SECTION, 'init_crosshair_color') self.crosshair = Crosshair(parent=self.signal_view.scene, color=hex2rgba(ch_color)) m_color = CONF.get(self.CONF_SECTION, 'init_marker_color') # TODO marker color self.marker = Markers(parent=self.signal_view.scene) self.xaxis = Axis(parent=self.signal_view.scene, tick_direction=(0., 1.), axis_width=1, tick_width=1, anchors=('center', 'top'), axis_color=m_color, tick_color=m_color, text_color=m_color) self.x_tick_spacing = 1000 self.yaxis = Axis(parent=self.signal_view.scene, tick_direction=(1., 0.), axis_width=1, tick_width=1, anchors=('left', 'center'), axis_color=m_color, tick_color=m_color, text_color=m_color) self.y_tick_spacing = 100 self.measure_line = Line(parent=self.signal_view.scene, width=3, color=m_color) # TODO - textbox self.describe_text = Text(anchor_x='left', anchor_y='bottom', parent=self.signal_view.scene, color=m_color) # Signal highlighting self.highlight_rec = Mesh(parent=self.signal_view.scene, color=np.array([0., 0., 0., 0.]), mode='triangle_fan') # Grid self.grid = None # Discontinuity self.disc_marker = LinearRegion(np.array([0, 0]), np.array([[0., 0., 0., 0.], [0., 0., 0., 0.]]), parent=self.signal_view.scene) self.signal_label_dict = {} # Main signal visal with labels w = CONF.get(self.CONF_SECTION, 'init_line_width') self.signal_visual = Multiline(width=w, parent=self.signal_view.scene) self.label_visual = Text(anchor_x='left', anchor_y='top', parent=self.signal_view.scene) # TODO - one set of x and y axes for measurements # ----- Tool bar ----- btn_layout = QHBoxLayout() for btn in self.setup_buttons(): if btn is None: continue btn.setAutoRaise(True) btn.setIconSize(QSize(20, 20)) btn_layout.addWidget(btn) # if options_button: # btn_layout.addStretch() # btn_layout.addWidget(options_button, Qt.AlignRight) # TODO - this is temporary - solve the rendering in different thread select_mode = QComboBox(self) select_mode.insertItems(0, ['Browse', 'Research']) antialias = CONF.get(self.CONF_SECTION, 'antialiasing') if antialias == 'filter': select_mode.setCurrentIndex(0) elif antialias == 'min_max': select_mode.setCurrentIndex(1) select_mode.currentIndexChanged.connect(self.switch_display_mode) btn_layout.addWidget(select_mode) # Color coding color_code = QComboBox(self) color_code.insertItems(0, ['None', 'Channel', 'Group', 'Amplitude']) color_code.currentIndexChanged.connect(self.switch_cc_mode) btn_layout.addWidget(color_code) # Metadata reload button btn_layout.setAlignment(Qt.AlignLeft) layout = create_plugin_layout(btn_layout) # ----- Set layout ----- layout.addWidget(self.canvas.native) # Set the whole layout self.setLayout(layout) # Connect signals self.main.sig_file_opened.connect(self.initialize_data_map) self.main.metadata_reloaded.connect(self.create_conglomerate_disconts) self.plots_changed.connect(self.set_plot_update) self.plots_changed.connect(self.subsample) self.plots_changed.connect(self.rescale_grid) self.input_recieved.connect(self.set_highlight_mode) self.input_recieved.connect(self.show_measure_line) self.canvas_resized.connect(self.update_subsample) # ----- Setup functions ----- def setup_buttons(self): take_screenshot = create_toolbutton(self, icon='camera.svg', tip='Take screenshot', triggered=self.take_screenshot) show_grid = create_toolbutton(self, icon='grid.svg', tip='Show grid', triggered=self.show_grid) autoscale = create_toolbutton(self, icon='autoscale.svg', tip='Autoscale', triggered=self.set_autoscale) save_data = create_toolbutton(self, icon='floppy-disk.svg', tip='Save displayed data', triggered=self.save_displayed_data) # ---- TEMP !!! ------- -> move to the right side (add stretch) reload_metadata = create_toolbutton(self, icon='reload.svg', tip='Reload metadata', toggled=self.main. ss_reaload_worker) autoslide = create_toolbutton(self, icon='play.svg', tip='Autoslide', toggled=self.ss_autoslide_worker) # -------------- return (take_screenshot, show_grid, autoscale, save_data, reload_metadata, autoslide) # ----- Key bindings ----- def set_plot_update(self): self.plot_update_done = True def check_event_timer(self, time): if time - self.event_time < .1: return False else: return True def set_event_timer(self): self.event_time = time() def on_key_press(self, event): if event.handled: return modifiers = event.modifiers plot_data_operators = ['up', 'down', 'left', 'right', 'q', 'a'] # TODO: there should be a key mapper in the future! - python dictionary if event.type == 'key_press': if (event.key in plot_data_operators and self.plot_update_done and self.check_event_timer(time())): if event.key == 'Up': self.scale_plot_data(True) if event.key == 'Down': self.scale_plot_data(False) # These operations require data pull, introduced a timer # NOTE: we now know that rendering of big data takes time if event.key == 'Left': self.plot_update_done = False if 'shift' in modifiers: # Partial shift self.shift_plot_data(False, 0.5) else: self.shift_plot_data(False) if event.key == 'Right': self.plot_update_done = False if 'shift' in modifiers: # Partial shift self.shift_plot_data(True, 0.5) else: self.shift_plot_data(True) if event.key == 'q': self.plot_update_done = False self.change_time_span(True) if event.key == 'a': self.plot_update_done = False self.change_time_span(False) self.set_event_timer() event.handled = True else: self.input_recieved.emit(event) else: event.handled = False def on_key_release(self, event): if event.handled: return if event.type == 'key_release': self.input_recieved.emit(event) event.handled = True else: event.handled = False # ----- Highlight / measurement mode , canvas behavior ----- def set_highlight_mode(self, event): if event.type not in ('key_press', 'key_release'): return if event.key not in ('shift', 'control'): return if event.type == 'key_press' and event.key == 'shift': self.highlight_mode = True self.highlight_rec.visible = True elif event.type == 'key_press' and event.key == 'control': self.measurement_mode = True self.crosshair.visible = True self.marker.visible = True self.xaxis.visible = True self.yaxis.visible = True elif event.type == 'key_release' and event.key == 'shift': self.highlight_mode = False self.highlight_rec.visible = False elif event.type == 'key_release' and event.key == 'control': self.measurement_mode = False self.crosshair.visible = False self.marker.visible = False self.xaxis.visible = False self.yaxis.visible = False self.measure_line.visible = False self.describe_text.visible = False def on_mouse_move(self, event): if 1 in event.buttons or 2 in event.buttons and not event.modifiers: self.subview_changed.emit() # Get position relative to zoom pos = event.pos[:2] w = self.signal_view.width h = self.signal_view.height rel_w_pos = pos[0] / w # TODO: flip Vispy axis rel_h_pos = (h-pos[1]) / h rect = self.camera.rect self.rect_rel_w_pos = rect.left + (rel_w_pos * rect.width) self.rect_rel_h_pos = rect.bottom + (rel_h_pos * rect.height) # Determine the signal plot rows = self.visible_channels.get_row_count() cols = self.visible_channels.get_col_count() sig_w_pos = self.rect_rel_w_pos * cols sig_h_pos = self.rect_rel_h_pos * rows for pc in self.get_plot_containers(): if ((pc.plot_position[0] < sig_w_pos < pc.plot_position[0]+1) and (pc.plot_position[1] < sig_h_pos < pc.plot_position[1]+1)): self.curr_pc = pc break # ??? Instead of modes use event.modifiers??? if self.highlight_mode: self.highlight_signal(self.curr_pc) if self.measurement_mode: self.crosshair.set_data([self.rect_rel_w_pos, self.rect_rel_h_pos]) n_channels = self.visible_channels.get_row_count() # Get the location of data point s_y = self.curr_pc.ufact*self.curr_pc.scale_factor t_y = ((-np.nanmean(self.curr_pc.data) * self.curr_pc.ufact * self.curr_pc.scale_factor) + ((0.5+self.curr_pc.plot_position[1]) / n_channels)) data_pos = self.curr_pc.data[int(self.rect_rel_w_pos * len(self.curr_pc.data))] data_pos *= s_y data_pos += t_y self.marker.set_data(np.array([[self.rect_rel_w_pos, data_pos]])) # TODO: determine margins # Axes t_y = (self.curr_pc.plot_position[1] / n_channels) y_margin = 0 self.xaxis.pos = [[rect.left, t_y + y_margin], [rect.left+(rect.width*self.x_tick_spacing), t_y + y_margin]] rel_diff = (rect.right - rect.left) * np.diff(pc.uutc_ss) self.xaxis.domain = tuple([0, rel_diff/1000000]) s = [1/self.x_tick_spacing, 1] t = [rect.left-rect.left*s[0], 0] self.xaxis.transform = scene.transforms.STTransform(s, t) x_margin = 0 self.yaxis.pos = [[rect.left + x_margin, t_y], [rect.left + x_margin, t_y + ((1/n_channels)*self.y_tick_spacing)]] s = [1, 1/self.y_tick_spacing] t = [0, t_y-t_y*s[1]] self.yaxis.transform = scene.transforms.STTransform(s, t) lpos = self.measure_line.pos if lpos is not None: fixed = lpos[0] right_angle = np.array([fixed[0], data_pos]) moving = np.array([self.rect_rel_w_pos, data_pos]) whole_line = np.vstack([fixed, right_angle, moving]) self.measure_line.set_data(pos=whole_line) # Time max_step = 1/self.curr_pc.fsamp time_dist = moving[0]-fixed[0] time_dist *= np.diff(self.curr_pc.uutc_ss)[0] / 1e6 time_dist -= time_dist % max_step oround = int(np.ceil((np.log10(self.curr_pc.fsamp)))) time_str = format(time_dist, '.'+str(oround)+'f')+' s' time_str_pos = moving.copy() # Amplitude max_step = self.curr_pc.ufact amp_dist = (moving[1] - fixed[1]) / s_y amp_dist *= max_step amp_dist -= amp_dist % amp_dist amp_str = (format(amp_dist, '.5f') + ' ' + self.curr_pc.unit) amp_str_pos = moving.copy() amp_str_pos[0] = moving[0] fsize = self.describe_text.font_size amp_str_pos[1] += (((fsize+1)*rect.height) / self.signal_view.height) self.describe_text.text = [time_str, amp_str] self.describe_text.pos = [time_str_pos, amp_str_pos] self.describe_text.color = np.array([[1., 1., 1., 1.], [1., 1., 1., 1.]], dtype=np.float32) self.input_recieved.emit(event) def show_measure_line(self, event): if event.type != 'mouse_press': return modifiers = event.modifiers if 'control' in modifiers: # Get position relative to zoom self.measure_line.visible = True pos = self.marker._data['a_position'][0][:2] self.measure_line.set_data(pos=np.tile(pos, 3).reshape([3, 2])) self.describe_text.visible = True def on_mouse_press(self, event): self.input_recieved.emit(event) def on_mouse_release(self, event): self.subsample() self.update_labels() def on_mouse_wheel(self, event): # TODO: subsample for zoom # Get x_pos x_pos = event.pos[0] # Get the zoomed area def on_resize(self, event): self.resize_flag = True if np.any(self.main.signal_display.data_map['ch_set']): self.canvas_resized.emit() # ----- Screenshot ----- def save_image(self): im = pil_Image.fromarray(self.screen_img) save_dialog = QFileDialog(self) save_dialog.selectFile('pysigview_screenshot.png') save_path = save_dialog.getSaveFileName(self, 'Save File', get_home_dir(), "Images (*.png *.tiff *.jpg)") path = save_path[0] if not any([x for x in ['.png', '.tiff', '.jpg'] if x in path]): path += '.png' im.save(path) return def close_screenshot(self): self.screenshot_diag.reject() def take_screenshot(self): self.screen_img = self.canvas.render() # Pop the screenshot window self.screenshot_diag = QDialog(self) self.screenshot_diag.setModal(False) # Set the image canvas = scene.SceneCanvas(show=True, size=self.canvas.size, parent=self.screenshot_diag) view = canvas.central_widget.add_view() Image(self.screen_img, parent=view.scene) layout = QVBoxLayout() layout.setContentsMargins(0, 0, 0, 0) layout.addWidget(canvas.native) button_layout = QHBoxLayout() cancel_btn = QPushButton('Cancel') cancel_btn.clicked.connect(self.close_screenshot) button_layout.addWidget(cancel_btn) save_btn = QPushButton('Save') save_btn.clicked.connect(self.save_image) button_layout.addWidget(save_btn) layout.addLayout(button_layout) self.screenshot_diag.setLayout(layout) self.screenshot_diag.setVisible(True) # ----- Grid ----- def show_grid(self): if not len(self.get_plot_containers()): return if self.grid is None: rows = self.visible_channels.get_row_count() if rows: y_scale = 1/rows else: y_scale = 1 if self.master_plot: pass # TODO else: uutc_ss = self.data_map.get_active_largest_ss() span_secs = np.diff(uutc_ss) / 1e6 order_m = 10 ** (np.floor(np.log10(span_secs))) x_scale = order_m / span_secs c = CONF.get(self.CONF_SECTION, 'grid_color') self.grid = GridLines(scale=(x_scale, y_scale), color=c, parent=self.signal_view.scene) else: self.grid.parent = None self.grid = None def rescale_grid(self): if self.grid is not None: self.grid.parent = None self.grid = None rows = self.visible_channels.get_row_count() if rows: y_scale = 1/rows else: y_scale = 1 if self.master_plot: pass # TODO else: uutc_ss = self.data_map.get_active_largest_ss() span_secs = np.diff(uutc_ss) / 1e6 order_m = 10 ** (np.floor(np.log10(span_secs))) x_scale = order_m / span_secs self.grid = GridLines(scale=(x_scale, y_scale), parent=self.signal_view.scene) # ----- Autoscale ----- def set_autoscale(self): pcs = self.get_plot_containers() for pc in pcs: if pc.autoscale: pc.autoscale = False pc.scale_factor = 1 else: pc.autoscale = True self.update_signals() # ----- Save displayed data ----- def save_displayed_data(self): # Bring up save dialog save_dialog = QFileDialog(self) save_dialog.setDefaultSuffix(".pkl") file_types = "Python pickle (*.pkl);;Matlab (*.mat)" save_path = save_dialog.getSaveFileName(self, 'Save displayed data', get_home_dir(), file_types) # Get the data from visuals names = [] data = [] for pc in self.get_plot_containers(): names.append(pc.container.item_widget.label.text()) data.append(self.data_array[pc.data_array_pos][0]) data = np.vstack(data) dict_out = {'channel_names': names, 'data': data} path = save_path[0] # Evaluate the extension and save if save_path[1] == "Python pickle (*.pkl)": if '.pkl' not in path: path += '.pkl' with open(path, 'wb') as fid: pickle.dump(dict_out, fid) elif save_path[1] == "Matlab (*.mat)": if '.mat' not in path: path += '.mat' savemat(path, dict_out) return # ----- Display mode switch ----- def switch_display_mode(self, mode): if mode == 0: CONF.set(self.CONF_SECTION, 'antialiasing', 'filter') elif mode == 1: CONF.set(self.CONF_SECTION, 'antialiasing', 'min_max') self.update_subsample() if len(self.data_map.get_active_channels()): self.set_plot_data() return def update_subsample(self): antialias = CONF.get(self.CONF_SECTION, 'antialiasing') pcs = self.get_plot_containers() for pc in pcs: if antialias == 'filter': pc.N = int(self.canvas.central_widget.width) elif antialias == 'min_max': pc.N = None # ----- Color coding ----- def switch_cc_mode(self, coding): self.color_coding_mode = coding self.color_code() def color_code(self): pcs = self.get_plot_containers() if not len(pcs): return if self.color_coding_mode == 0: c = hex2rgba(CONF.get(self.CONF_SECTION, 'init_line_color')) for pc in pcs: pc.line_color = c pc.container.item_widget.color_select.set_color(c) self.update_labels() elif self.color_coding_mode == 1: # Channels #TODO - in prefs, color.get_colormaps() cm = color.get_colormap(self.color_palette) colors = cm[np.linspace(0, 1, len(pcs))] for pc, c in zip(pcs, colors): pc.line_color = c.rgba[0] pc.container.item_widget.color_select.set_color(c.rgba[0]) self.update_labels() # Acquire the colors based on number of channels # ???Introduce a limit??? If not the channels might be too simliar elif self.color_coding_mode == 2: # Groups ch_names = [x.orig_channel for x in pcs] g_names = [] for ch_name in ch_names: stub = ''.join([i for i in ch_name if not i.isdigit()]) g_names.append(stub) g_names = list(set(g_names)) # TODO - in prefs, color.get_colormaps() cm = color.get_colormap(self.color_palette) colors = cm[np.linspace(0, 1, len(g_names))] for pc in pcs: stub = ''.join([i for i in pc.orig_channel if not i.isdigit()]) c = colors[g_names.index(stub)] pc.line_color = c.rgba[0] pc.container.item_widget.color_select.set_color(c.rgba[0]) self.update_labels() elif self.color_coding_mode == 3: # Amplitude pass else: pass self.update_signals() # ----- Autoslide ----- def autoslide(self): self.shift_plot_data(True) def ss_autoslide_worker(self): if self.slide_worker_stopped: self.start_slide_worker.emit() self.slide_worker_stopped = False else: self.stop_slide_worker.emit() self.slide_worker_stopped = True # ----- Camera handling ----- def reset_cam(self): self.camera.set_state(self.orig_cam_state) def update_cam_state(self): self.orig_cam_state = self.camera.get_state() # ----- QT Widget behavior (drag/drops) ----- def dragEnterEvent(self, event): if event.mimeData().hasUrls: event.accept() else: event.ignore() def dropEvent(self, event): event.setDropAction(Qt.CopyAction) source = event.source() # The source of drop fork if event.source() is None: # Dropped from outside of Qt app event.accept() url = event.mimeData().urls()[0] self.main.open_data_source(url.toLocalFile()) elif event.source() == self.hidden_channels: # Hidden channel list event.accept() self.visible_channels.insert_items([x.text() for x in source.drag_items]) else: event.ignore() def enterEvent(self, event): self.canvas.native.setFocus() # ----- Data handling ----- def get_minmax_idxs(self, sig, step): N = int(np.ceil(len(sig) / step)) max_idx = np.empty(N, 'uint32') min_idx = np.empty(N, 'uint32') trans_sig = np.resize(sig, (N, step)) max_idx = trans_sig.argmax(1) max_idx += (np.arange(N)*step) max_idx[max_idx >= len(sig)] = len(sig) - 1 min_idx = trans_sig.argmin(1) min_idx += (np.arange(N)*step) min_idx[min_idx >= len(sig)] = len(sig) - 1 return max_idx, min_idx def subsample(self): rect = self.signal_view.camera.rect w = rect.width max_viewed_points = 10000 right = rect.right left = rect.left if left < 0: left = 0 if right > 1: right = 1 vis_pos = self.signal_visual.pos vis_index = self.signal_visual.index indices = np.hstack([0, np.cumsum([len(x) for x in vis_pos])[:-1]]) for pc in self.get_plot_containers(): pos_i = pc._visual_array_idx line_len = len(vis_pos[pos_i]) fraction = int((line_len * w) // max_viewed_points) li = int(np.floor(left*line_len)) ri = int(np.floor(right*line_len)) if fraction <= 1: vis_index[indices[pos_i]:indices[pos_i]+line_len] = 0 vis_index[li + indices[pos_i]:ri + indices[pos_i]] = 1 else: max_idx, min_idx = self.get_minmax_idxs(vis_pos[pos_i][li:ri], fraction) # Corect the max min indices to line pos max_idx += (li + indices[pos_i]) min_idx += (li + indices[pos_i]) vis_index[indices[pos_i]:indices[pos_i]+line_len] = 0 vis_index[max_idx] = 1 vis_index[min_idx] = 1 self.signal_visual.index = vis_index # ----- Discontinuities ----- def create_conglomerate_disconts(self): # TODO: what if the channels are changed? This should not be run! disconts = sm.ODS.data_map['discontinuities'] chan_mask = self.main.signal_display.data_map['ch_set'] disconts = disconts[chan_mask] # Do not process disconts that are already processed if self.disconts_processed: proc_start = self.cong_discontinuities[0][0] proc_stop = self.cong_discontinuities[-1][-1] for i in range(len(disconts)): disconts[i] = disconts[i][~((disconts[i][:, 0] >= proc_start) & (disconts[i][:, 1] <= proc_stop))] # Channel with the fewest disconts min_disc_ch_idx = np.argmin([len(x) for x in disconts]) min_disc_ch = disconts[min_disc_ch_idx] conglom_discs = [] # Iterate over the rest of channels for di, intersect in enumerate(min_disc_ch): ch_count = 1 for cdi, ch_discs in enumerate(np.delete(disconts, min_disc_ch_idx)): # Get starts in inclusive intervals idx = np.where((intersect[0] <= ch_discs[:, 0]) & (ch_discs[:, 0] <= intersect[1]))[0] if len(idx): intersect[0] = ch_discs[idx][0][0] # Get stops in inclusive intervals idx = np.where((intersect[0] <= ch_discs[:, 1]) & (ch_discs[:, 1] <= intersect[1]))[0] if len(idx): intersect[1] = ch_discs[idx][0][1] ch_count += 1 # Is the discontinuity in all channels? if ch_count == len(disconts): conglom_discs.append(intersect) if self.disconts_processed: if len(conglom_discs): self.cong_discontinuities = np.concatenate( [self.cong_discontinuities, np.array(conglom_discs)]) else: self.cong_discontinuities = np.array(conglom_discs) self.disconts_processed = True # ----- Data map operations ----- def initialize_data_map(self): self.data_map.setup_data_map(sm.ODS.data_map._map) self.data_map.reset_data_map() # TODO: what if there are two channels with the same orig_channels def update_data_map_channels(self): """ Updates data_map from visible_channels pane and reloads the data. """ pcs = self.get_plot_containers() # Check if some channels are duplicate channels = [] uutc_ss = [] for pc in pcs: pc_chans = [pc.orig_channel] + pc.add_channels # Get the channels in the current plot container for o_ch in pc_chans: # Check if the channel is already in the list if o_ch in channels: ch_idx = channels.index(o_ch) if pc.uutc_ss[0] < uutc_ss[ch_idx][0]: uutc_ss[ch_idx][0] = pc.uutc_ss[0] if pc.uutc_ss[1] > uutc_ss[ch_idx][1]: uutc_ss[ch_idx][1] = pc.uutc_ss[1] else: channels.append(o_ch) uutc_ss.append(pc.uutc_ss) self.data_map.reset_data_map() if len(channels) == 0: return self.data_map.set_channel(np.array(channels), np.array(uutc_ss)) self.create_conglomerate_disconts() self.check_data_map_uutc_ss() # Reset data_array where the channel is not set if self.data_array is not None: self.data_array[ ~self.data_map._map['ch_set']] = np.array(0, 'float32') # ----- Load data start ----- def get_plot_containers(self): items = self.visible_channels.get_container_items() return [x.pvc for x in items] # XXX - this could probably be made into a general plot_container function def add_signal_container(self, orig_channel): container_items = self.visible_channels.get_container_items() mf_scale_fatcor = None scale_factors = [x.pvc.scale_factor for x in container_items] if scale_factors: # In case of half/half, let python choose :-) mf_scale_fatcor = max(scale_factors, key=scale_factors.count) # Get the max span and assign to new signals largest_ss = self.data_map.get_active_largest_ss() pc = SignalContainer(orig_channel) ci = sm.ODS.data_map['channels'] == pc.orig_channel ci_entry = sm.ODS.data_map[ci] pc.fsamp = ci_entry['fsamp'][0] pc.unit = ci_entry['unit'][0] pc.ufact = ci_entry['ufact'][0] pc.nsamp = ci_entry['nsamp'][0] pc.start_time = ci_entry['uutc_ss'][0][0] antialias = CONF.get(self.CONF_SECTION, 'antialiasing') if antialias == 'filter': pc.N = int(self.canvas.central_widget.width) elif antialias == 'min_max': pc.N = None c = hex2rgba(CONF.get(self.CONF_SECTION, 'init_line_color')) pc.line_color = np.array(c) pc.data_array_pos = [np.where(ci)[0][0]] # Scale factor if mf_scale_fatcor: pc.scale_factor = mf_scale_fatcor # Time span init_tscale = CONF.get(self.CONF_SECTION, 'init_time_scale')*1e6 if np.diff(largest_ss): pc.uutc_ss = largest_ss else: pc.uutc_ss = [pc.start_time, pc.start_time+init_tscale] return pc def side_flash(self, color=None): color = hex2rgba(CONF.get(self.CONF_SECTION, 'side_flash_color')) if self.discont_side == 1: # left pos = np.array([0., 0.1]) color = np.vstack([color, [0., 0., 0., 0.]]) elif self.discont_side == 2: # right pos = np.array([0.9, 1.0]) color = np.vstack([[0., 0., 0., 0.], color]) else: pos = np.array([0., 0.]) color = np.zeros([2, 4]) self.disc_marker.set_data(pos, color) return def check_uutc_ss(self, uutc_ss): # Checks recording start and stop span = np.diff(uutc_ss)[0] if uutc_ss[0] < sm.ODS.recording_info['recording_start']: uutc_ss[0] = sm.ODS.recording_info['recording_start'] if span < sm.ODS.recording_info['recording_duration']: uutc_ss[1] = uutc_ss[0] + span if uutc_ss[1] > sm.ODS.recording_info['recording_end']: uutc_ss[1] = sm.ODS.recording_info['recording_end'] if span < sm.ODS.recording_info['recording_duration']: uutc_ss[0] = uutc_ss[1] - span self.discont_side = 0 # Checks for discontinuities if self.cong_discontinuities is not None: max_span = np.diff(self.data_map.get_active_largest_ss()) large_disconts_idxs = np.diff(self.cong_discontinuities) > max_span large_disconts_idxs = large_disconts_idxs.ravel() large_disconts = self.cong_discontinuities[large_disconts_idxs] starts = large_disconts[:, 0] <= uutc_ss[0] stops = uutc_ss[0] <= large_disconts[:, 1] in_discont_idx = np.where(starts & stops)[0] if len(in_discont_idx): in_discont = large_disconts[in_discont_idx][0] uutc_ss[0] = in_discont[1] uutc_ss[1] = uutc_ss[0] + span self.discont_side = 1 # left side self.curr_discont = in_discont starts = large_disconts[:, 0] <= uutc_ss[1] stops = uutc_ss[1] <= large_disconts[:, 1] in_discont_idx = np.where(starts & stops)[0] if len(in_discont_idx): in_discont = large_disconts[in_discont_idx][0] uutc_ss[1] = in_discont[0] uutc_ss[0] = uutc_ss[1] - span self.discont_side = 2 # right side self.curr_discont = in_discont return uutc_ss def check_data_map_uutc_ss(self): corrected_uutc_ss = [] for uutc_ss in self.data_map.get_active_uutc_ss(): corrected_uutc_ss.append(self.check_uutc_ss(uutc_ss)) channels = self.data_map.get_active_channels() self.data_map.set_channel(channels, corrected_uutc_ss) self.data_map_changed.emit(self.data_map) self.side_flash() def check_pcs_uutc_ss(self): for pc in self.get_plot_containers(): pc.uutc_ss = self.check_uutc_ss(pc.uutc_ss) def calculate_sample(self, pc): ch_i = np.where(self.data_map['channels'] == pc.orig_channel)[0] dm_uutc_ss = self.data_map['uutc_ss'][ch_i][0] start = int(((pc.uutc_ss[0] - dm_uutc_ss[0]) / 1e6) * pc.fsamp) stop = int(((pc.uutc_ss[1] - dm_uutc_ss[0]) / 1e6) * pc.fsamp) return start, stop # TODO - when chnaging individual channel time scale # the set_plot_data function is called twice - eliminate def set_plot_data(self, uutc_ss=None, channels=None): if self.data_array is None: first_load = True else: first_load = False # This check whether provider data source is a buffer if getattr(sm.PDS, "is_available", None): while not sm.PDS.is_available(self.data_map): sleep(0.1) continue if len(self.data_map.get_active_channels()) == 0: return self.data_array = sm.PDS.get_data(self.data_map) pcs = self.get_plot_containers() for pc in pcs: start, stop = self.calculate_sample(pc) pc.data = np.array([x[start:stop] for x in self.data_array[pc.data_array_pos]]) if first_load: self.autoscale_plot_data(pcs[0]) for pc in pcs[1:]: pc.scale_factor = pcs[0].scale_factor self.update_signals() if self.resize_flag: self.resize_flag = False return # ----- Signal updating functions ----- def update_labels(self): """ Update names, positions and labels """ # Get current view left boundry rect = self.signal_view.camera.rect left = rect.left name_list = [] pos_list = [] color_list = [] for pc in self.get_plot_containers(): if self.signal_visual.visibility[pc._visual_array_idx]: name_list.append(pc.name) color_list.append(pc.line_color) # Label position l_x = pc.plot_position[0] + left l_y = (pc.plot_position[1] / self.visible_channels.get_row_count()) l_y += 1 / self.visible_channels.get_row_count() y_shift = (pc.plot_position[2] / self.canvas.central_widget.height) l_y -= y_shift * self.label_visual.font_size pos_list.append([l_x, l_y, 0]) if len(name_list) == 0: self.label_visual.text = None else: self.label_visual.text = name_list self.label_visual.pos = pos_list self.label_visual.color = np.c_[color_list] def update_signals(self): scales = [] offsets = [] color_list = [] data = np.empty(len(self.get_plot_containers()), object) visibility = [] for li, pc in enumerate(self.get_plot_containers()): data[li] = pc.data pc._visual_array_idx = li visibility.append(pc.visible) if pc.autoscale: self.autoscale_plot_data(pc) # Scale s_x = 1/len(pc.data) s_y = pc.ufact*pc.scale_factor s_z = 0 scales.append([s_x, s_y, s_z]) # Translate t_x = pc.plot_position[0] t_y = ((-np.nanmean(pc.data) * pc.ufact * pc.scale_factor) + ((0.5+pc.plot_position[1]) / self.visible_channels.get_row_count())) t_z = pc.plot_position[2] offsets.append([t_x, t_y, t_z]) color_list.append(pc.line_color) if len(data) == 0: pos = np.empty(1, dtype=object) pos[0] = np.array([0], dtype=np.float32) self.signal_visual.pos = pos else: self.signal_visual.set_data(pos=data, scales=scales, offsets=offsets, color=color_list, visibility=visibility) self.update_labels() self.plots_changed.emit() def move_to_time(self, midpoint): """ Moves the view to requested time(will be in the middle) """ a_channels = self.data_map.get_active_channels() a_uutc_ss = self.data_map.get_active_uutc_ss() a_spans = np.diff(a_uutc_ss).ravel() a_uutc_ss[:, 0] = midpoint - (a_spans / 2) a_uutc_ss[:, 1] = midpoint + (a_spans / 2) self.data_map.set_channel(a_channels, a_uutc_ss) # Update individual plot containers for pc in self.main.signal_display.get_plot_containers(): span = np.diff(pc.uutc_ss)[0] pc.uutc_ss[0] = int(midpoint - (span / 2)) pc.uutc_ss[1] = int(midpoint + (span / 2)) self.check_pcs_uutc_ss() self.check_data_map_uutc_ss() self.set_plot_data() def shift_plot_data(self, forward=True, shift_span=None): # Take care of discontinuities if self.discont_side: span = np.diff(self.data_map.get_active_largest_ss())[0] if self.discont_side == 1 and not forward: midpoint_to_go = self.curr_discont[0] - (span / 2) self.move_to_time(midpoint_to_go) return elif self.discont_side == 2 and forward: midpoint_to_go = self.curr_discont[1] + (span / 2) self.move_to_time(midpoint_to_go) return if self.master_plot: uutc_ss = self.master_plot.uutc_ss base_span = np.diff(uutc_ss) else: base_span = np.diff(self.data_map.get_active_largest_ss())[0] if shift_span is None: span = base_span elif shift_span < 1: span = base_span * shift_span else: span = shift_span a_channels = self.data_map.get_active_channels() a_uutc_ss = self.data_map.get_active_uutc_ss() if forward: a_uutc_ss += int(span) self.data_map.set_channel(a_channels, a_uutc_ss) else: a_uutc_ss -= int(span) self.data_map.set_channel(a_channels, a_uutc_ss) for pc in self.get_plot_containers(): if forward: pc.uutc_ss[0] += int(span) pc.uutc_ss[1] += int(span) else: pc.uutc_ss[0] -= int(span) pc.uutc_ss[1] -= int(span) self.check_pcs_uutc_ss() self.check_data_map_uutc_ss() self.set_plot_data() return def change_time_span(self, up=True, channels=None, scale=2): """ Changes the time scale of plots """ a_channels = self.data_map.get_active_channels() a_uutc_ss = self.data_map.get_active_uutc_ss() a_spans = np.diff(a_uutc_ss).ravel() a_midpoints = np.sum(a_uutc_ss, 1) / 2 if up: a_uutc_ss[:, 0] = a_midpoints - (scale * (a_spans / 2)) a_uutc_ss[:, 1] = a_midpoints + (scale * (a_spans / 2)) self.data_map.set_channel(a_channels, a_uutc_ss) else: a_uutc_ss[:, 0] = a_midpoints - ((1/scale) * (a_spans / 2)) a_uutc_ss[:, 1] = a_midpoints + ((1/scale) * (a_spans / 2)) self.data_map.set_channel(a_channels, a_uutc_ss) for pc in self.get_plot_containers(): span = np.diff(pc.uutc_ss)[0] midpoint = np.sum(pc.uutc_ss) / 2 if up: pc.uutc_ss[0] = midpoint - (scale * (span / 2)) pc.uutc_ss[1] = midpoint + (scale * (span / 2)) else: pc.uutc_ss[0] = midpoint - ((1/scale) * (span / 2)) pc.uutc_ss[1] = midpoint + ((1/scale) * (span / 2)) self.check_pcs_uutc_ss() self.check_data_map_uutc_ss() self.set_plot_data() return def set_time_span_all(self, span): a_channels = self.data_map.get_active_channels() a_uutc_ss = self.data_map.get_active_uutc_ss() a_midpoints = np.sum(a_uutc_ss, 1) / 2 a_uutc_ss[:, 0] = a_midpoints - (span / 2) a_uutc_ss[:, 1] = a_midpoints + (span / 2) self.data_map.set_channel(a_channels, a_uutc_ss) for pc in self.get_plot_containers(): midpoint = np.sum(pc.uutc_ss) / 2 pc.uutc_ss[0] = midpoint - (span / 2) pc.uutc_ss[1] = midpoint + (span / 2) self.check_pcs_uutc_ss() self.check_data_map_uutc_ss() self.set_plot_data() def scale_plot_data(self, up=True, scale=2): for pc in self.get_plot_containers(): if up: pc.scale_factor = pc.scale_factor * scale else: pc.scale_factor = pc.scale_factor / scale self.update_signals() return def autoscale_plot_data(self, pc): amp_span = np.abs(np.nanmax(pc.data) - np.nanmin(pc.data)) row_span = 1 / self.visible_channels.get_row_count() pc.scale_factor = row_span / (amp_span * pc.ufact) def highlight_signal(self, pc): # Determine the signal rectangle w_step = 1/self.visible_channels.get_col_count() h_step = 1/self.visible_channels.get_row_count() # Pixel rel size to plot in inner rectangle pix_w = 1/self.signal_view.width pix_h = 1/self.signal_view.height rel_sig_w = pc.plot_position[0] * w_step rel_sig_h = pc.plot_position[1] * h_step left = rel_sig_w + (3*pix_w) right = rel_sig_w + w_step - (2*pix_w) bottom = rel_sig_h + (2*pix_h) top = rel_sig_h + h_step - (3*pix_h) pos = np.array([[left, bottom, 10], [right, bottom, 10], [right, top, 10], [left, top, 10]]) self.highlight_rec.set_data(vertices=pos, color=np.concatenate([pc.line_color[:-1], [0.2]])) return def apply_settings(self): # update CONF attributes from init self.canvas.bgcolor = CONF.get(self.CONF_SECTION,'bgcolor') self.color_palette = CONF.get(self.CONF_SECTION, 'color_palette')
def __init__(self, viewer): super(LassoSelectionMode, self).__init__(viewer) self.line = Line(color='purple', width=2, method='agg', parent=self._vispy_widget.canvas.scene)
print(open_mesh_boundary) print('Here the mesh has a single boundary') # WARNING : BrainObj should be added first before visb_sc = splt.visbrain_plot(mesh=open_mesh, caption='open mesh') # create points with vispy for bound in open_mesh_boundary: points = open_mesh.vertices[bound] s_rad = SourceObj('rad', points, color='red', symbol='square', radius_min=10) visb_sc.add_to_subplot(s_rad) lines = Line(pos=open_mesh.vertices[bound], width=10, color='b') # wrap the vispy object using visbrain l_obj = VispyObj('line', lines) visb_sc.add_to_subplot(l_obj) visb_sc.preview() # # here is how to get the vertices that define the boundary of # # a texture on a mesh mesh = sio.load_mesh('data/example_mesh.gii') tex_parcel = sio.load_texture('data/example_texture_parcel.gii') # bound_verts = stop.texture_boundary_vertices(tex_parcel.darray[0], 20, mesh.vertex_neighbors) boundaries = list() for val in np.unique(tex_parcel.darray[0]): boundary = stop.texture_boundary(mesh, tex_parcel.darray[0], val) boundaries.append(boundary)