Example #1
0
def train_places_low_shot(
    k_values: List[int],
    sample_inds: List[int],
    output_dir: str,
    layername: str,
    cfg: AttrDict,
):
    low_shot_trainer = SVMLowShotTrainer(cfg["SVM"],
                                         layer=layername,
                                         output_dir=output_dir)

    # we have extracted the features in the
    running_tasks = [
        mp.Process(
            target=train_sample_places_low_shot,
            args=(
                low_shot_trainer,
                k_values,
                sample_inds,
                sample_num,
                output_dir,
                layername,
                cfg,
            ),
        ) for sample_num in sample_inds
    ]
    for running_task in running_tasks:
        running_task.start()
    for running_task in running_tasks:
        running_task.join()
    results = low_shot_trainer.aggregate_stats(k_values, sample_inds)
    logging.info(f"All Done for layer: {layername}")
    return results
Example #2
0
def train_voc07_low_shot(
    k_values: List[int],
    sample_inds: List[int],
    output_dir: str,
    layername: str,
    cfg: AttrDict,
):
    dataset_name = cfg["SVM"]["low_shot"]["dataset_name"]
    low_shot_trainer = SVMLowShotTrainer(cfg["SVM"],
                                         layer=layername,
                                         output_dir=output_dir)
    train_data = merge_features(output_dir, "train", layername)
    train_features, train_targets = train_data["features"], train_data[
        "targets"]
    test_data = merge_features(output_dir, "test", layername)
    test_features, test_targets = test_data["features"], test_data["targets"]
    # now we want to create the low-shot samples based on the kind of dataset.
    # We only create low-shot samples for training. We test on the full dataset.
    generate_low_shot_samples(dataset_name, train_targets, k_values,
                              sample_inds, output_dir, layername)
    # Now, we train and test the low-shot SVM for every sample and k-value.
    for sample_num in sample_inds:
        for low_shot_kvalue in k_values:
            train_targets = load_file(
                f"{output_dir}/{layername}_sample{sample_num}_k{low_shot_kvalue}.npy"
            )
            low_shot_trainer.train(train_features, train_targets, sample_num,
                                   low_shot_kvalue)
            low_shot_trainer.test(test_features, test_targets, sample_num,
                                  low_shot_kvalue)
    # now we aggregate the stats across all independent samples and for each
    # k-value and report mean/min/max/std stats
    results = low_shot_trainer.aggregate_stats(k_values, sample_inds)
    logging.info("All Done!")
    return results