def auto_run_bencher(bencher, time=5, ave=True, vis=True): res = dict() for b in builder.builder_list.values(): if bencher.rust and b.crate_version is None: continue if isinstance(b, builder.RustOnly) and not bencher.rust: continue print("running", bencher.__name__, "with", b.name) single = auto_run_single(bencher, b, time, ave or vis) res[b.name] = single if vis: visual.plot(bencher, res) return res
predicted_stock_price = scaler.inverse_transform(dataset_test_total) # count of Wrong predicted value after applying treshold err_cnt = error_count(predicted_stock_price[:, 0], predicted_stock_price[:, 1], toler_treshold=5.0) # Calc difference between real data price and predicted price diff_rate = calc_diff(predicted_stock_price[:, 0], predicted_stock_price[:, 1]) # show the inputs and predicted outputs for i in range(len(predicted_stock_price[:, 1])): print("X=%s, Predicted=%s" % (predicted_stock_price[i, 1], predicted_stock_price[i, 0])) print("Error count: ", err_cnt, "\n diff rate: ", diff_rate, "\n") ## Visualising the results plot(predicted=predicted_stock_price[:, 1]) plot(real=predicted_stock_price[:, 0]) plot(predicted=predicted_stock_price[:, 1], real=predicted_stock_price[:, 0]) # MSE mse = mean_squared_error(predicted_stock_price[:, 0], predicted_stock_price[:, 1]) print("MSE: ", mse) ############ Visualizing the results ############ print("#############################################################") # prin thn allagh, ola ta X_all kai y_all htan X kai y inputs = np.array(X_all) all_real_price = np.array(y_all) print("all real price ", all_real_price, all_real_price.shape)
del regressor regressor = load_model('1.h5') real_stock_price = np.array(X_test) inputs = real_stock_price predicted_stock_price = regressor.predict(inputs) dataset_test_total = pd.DataFrame() dataset_test_total['real'] = real_stock_price dataset_test_total['predicted'] = predicted_stock_price predicted_stock_price = scaler.inverse_transform(dataset_test_total) diff_rate = calc_diff(predicted_stock_price[:, 0], predicted_stock_price[:, 1]) inputs = np.array(X) all_real_price = np.array(y) all_predicted_price = regressor.predict(inputs) dataset_pred_real = pd.DataFrame() dataset_pred_real['real'] = all_real_price dataset_pred_real['predicted'] = all_predicted_price all_prices = scaler.inverse_transform(dataset_pred_real) plot(predicted=all_prices[:, 0]) plot(real=all_prices[:, 1]) plot(predicted=all_prices[:, 0], real=all_prices[:, 1])
new_date = {'value': random.randint(0, 100)} db.update(result[0], {"$set": new_date}) # 对查询到的第一条数据进行修改 print('成功将:{} 修改成: {}'.format(result[0], new_date)) except Exception as e: print(e) if __name__ == '__main__': write() print('成功写入10w条随机数据!\n') insert() print() time.sleep(2) delete() print() time.sleep(2) result = search({'value': {'$gte': 0, '$lt': 10}}) # 查询条件 [0, 10)间的数据 print('0-10间的数据有:\n', list(result)) print() time.sleep(2) change() print() time.sleep(2) plot()