def main(): config = get_config_from_args() visualizer = Visualizer(config) if config.dir: visualizer.replay_dir() else: visualizer.replay_file()
import numpy as np np.random.seed(1) # NumPy import random random.seed(2) # Python from tensorflow import set_random_seed set_random_seed(3) # Tensorflow from causality_detection.feed_forward import Evaluation from visualization.visualizer import Visualizer if __name__ == '__main__': evaluation = Evaluation() visualizer = Visualizer() experiment_key = 'cnet_wiki_exp_0' settings = { 'dataset_file': 'causal_pairs_dataset_1000.csv', 'result_file': 'results.json', 'embedding_model_file': 'files/GoogleNews-vectors-negative300.bin', 'causal_net_file': 'causal_net_1m.pickle', 'n_pair': 1000, 'n_expand': 0, 'result_key': 'cnet_wiki_exp_0' } evaluation.run_experiment(settings=settings) # settings['threshold'] = 10 # settings['result_key'] = 'luo_threshold_10' # evaluation.run_experiment_on_luos_method(settings)
robot_parameter=robot_params, sim_parameter=sim_params) pilcotrac = PILCOTRAC(robot_params, sim_params, robot_state, pathHandler, motion_model, feedforward, SUBS=150) # Wait to load visualizer print("Example Knicklenkung PILCO") print("\trobot_state = ", robot_state) # Visualization vis = Visualizer(robot_params, pathHandler, robot_state) # sleep(3.0) SUBS = 400 T = 30 T_sim = 2500 J = 10 with tf.Session() as sess: max_yerror = 0.3 X1, Y1, k = pilcotrac.rollout(None, max_yerror, data_mean=None, data_std=None, lookahead=1.22,
from visualization.visualizer import Visualizer if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-k", "--key", default=None, help="Experiment key") parser.add_argument("-v", "--visualize", default='no', help="Generate output charts") args = parser.parse_args() experiment_key = args.key visualize = args.visualize evaluation = Evaluation() visualizer = Visualizer() settings = { 'dataset_file': 'causal_pairs_dataset_1000.csv', 'result_file': 'results.json', 'embedding_model_file': 'files/GoogleNews-vectors-negative300.bin', 'causal_net_file': 'causal_net_1m.pickle', 'n_pair': 1000, 'n_expand': 0, 'result_key': 'cnet_wiki_exp_0' } if experiment_key == 'cnet_wiki_exp_0': evaluation.run_experiment(settings=settings) if experiment_key == 'cnet_wiki_exp_1':
def main(): if len(sys.argv) < 2: raise ValueError('At least one file or folder needs to be provided') results = Summary.loads(*sys.argv[1:]) vis = Visualizer(results) f = plt.figure() ax = f.add_subplot(231) vis.plot_metric(lambda s: s.precision, name='Precision', ax=ax, legend=False, print_params=True) ax = f.add_subplot(232) vis.plot_metric(lambda s: s.tp + s.fn, name='Sampled Positives', ax=ax, legend=False) def _f1(p, r): f1 = np.zeros(shape=p.shape) pr_sum = p + r i = pr_sum > 0 f1[i] = 2 * p[i] * r[i] / pr_sum[i] return f1 ax = f.add_subplot(233) vis.plot_metric(lambda s: _f1(s.precision, s.recall), name='F1 score', ax=ax, legend=False) ax = f.add_subplot(234) vis.plot_metric(lambda s: s.recall, name='Recall', ax=ax, legend=False) ax = f.add_subplot(235) vis.plot_metric(lambda s: s.unique, name='Number of unique actions', ax=ax, legend=False) ax = f.add_subplot(236) vis.plot_metric(lambda s: s.unique_positive, name='Number of unique positive actions', ax=ax, legend=True) plt.show()