l = Log(file_path) # variants_count = case_statistics.get_variant_statistics(l.log) # variants_count = \ # sorted(variants_count, # key=lambda x: x['count'], # reverse=True) # print('') # print(variants_count) # print('') l.filter_variants(Log.INTENSE_FILTERING) # dfg_discovery.apply(l.log) dfg = DFG(l.log) Visualizer.dfg_visualizer(dfg.dfg, l.log) # variants_count = case_statistics.get_variant_statistics(l.log) # variants_count = \ # sorted(variants_count, # key=lambda x: x['count'], # reverse=True) # print('') # print(variants_count) # print('')
df_time = df_time[(df_time['duration'] < lower_bound) | (df_time['duration'] > upper_bound)] df_time.count() df_time.reset_index(level=0, inplace=True) df['case:concept:name'].nunique() key = ['case:concept:name'] i1 = df.set_index(key).index i2 = df_time.set_index(key).index df = df[~i1.isin(i2)] df['case:concept:name'].nunique() # log = log_converter.apply(df_log) l = Log(df_log=df) l.filter_variants(1) dfg = DFG(l.log, parameters={parameters.Parameters.AGGREGATION_MEASURE: 'mean'}, variant=dfg_discovery.Variants.PERFORMANCE) print(dfg.dfg) Visualizer.dfg_visualizer(dfg.dfg, l.log, variant=dfg_visualization.Variants.PERFORMANCE) print('teste')