Example #1
0
 def ssr_curve(self,
               x,
               y,
               slopes=[
                   0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0,
                   4.0, 5.0, 7.5, 10.0
               ]):
     ssrs = []
     for slope in slopes:
         yint = (np.mean(y) - slope * np.mean(x))
         ssrs.append(
             self.get_ss_res(zip(x, y), lambda val: slope * val + yint))
     image_manager = ImageManager()
     plotter = Plotter()
     plotter.set_title('Sum of Squared Residuals')
     plotter.set_axis_labels('Slope Selected', 'Sum of Squared Residual')
     plotter.set_output_filename(g.files['ls-ssr'])
     ssr_plot = ScatterSketch()
     ssr_plot.add_x(slopes)
     ssr_plot.add_y(ssrs)
     plotter.load(ssr_plot)
     plotter.save()
     plotter.close()
     g.debug.prn(self, 'Drawn Sum of Squared Residuals Plot')
     image_manager.scale(g.files['ls-ssr'], g.files['ls-ssr'], 250)
Example #2
0
 def plot_roc(self):
     plotter = Plotter()
     plotter.set_title('Receiver Operating Characteristic')
     plotter.set_axis_labels('')
     plotter.set_output_filename()  #TODO: Fill filename
     plotter.close()
     pass  # Save the image as "roc.png"
Example #3
0
    def f_dist(self, model_type, trials):
        plotter = Plotter()
        image_manager = ImageManager()

        plotter.set_title('F Distribution')
        plotter.set_axis_labels('Frequency', 'F Score')
        plotter.set_output_filename(g.files['least-squares-f'])

        histogram = HistogramSketch()
        for i in range(trials):
            x_vals = g.randomizer.random_list(g.points_to_gen, g.lower_x_bound,
                                              g.upper_x_bound)
            y_vals = g.randomizer.random_list(g.points_to_gen, g.lower_y_bound,
                                              g.upper_y_bound)

            if model_type == LinearModel:
                slope, yint = self.least_squares_slope_yint_eqn(x_vals, y_vals)
                func = lambda x: slope * x + yint
            else:
                g.debug.prn(self, 'Incompatible model type.', 1)
                break

            ss_fit = self.get_ss_res(zip(x_vals, y_vals), func)
            ss_mean = self.get_ss_res(zip(x_vals, y_vals),
                                      lambda x: np.mean(x_vals))
            p_fit = 2  # TODO: Update for Dataframe
            p_mean = 1  # ""
            n = len(x_vals)

            if ss_fit == 0 or (n - p_fit) == 0 or (p_fit - p_mean) == 0:
                self.debug.prn(self, 'F distribution cannot divide by zero.',
                               1)
                continue
            numerator = (ss_mean - ss_fit) / (p_fit - p_mean)
            denominator = ss_fit / (n - p_fit)

            histogram.add_x(numerator / denominator)
            histogram.set_bins()

        plotter.load(histogram)
        plotter.save()
        plotter.close()
        image_manager.scale(g.files['least-squares-f'],
                            g.files['least-squares-f'], 250)
        self.debug.prn(self, 'F distribution created.')