def send_extract(self, query): f = StringIO() query = urllib.unquote(query) content = Vlist() for (i,sub) in enumerate(query.split(',')): r = sub.split('-') if len(r)==1: if sub.strip()[0].lower()=='t': sub=sub.strip()[1:] content.append(Path(test_data.extract(int(sub)), 'T%s<br>'%sub)) else: content.append(Path(train_data.extract(int(sub)), '%s<br>'%sub)) elif len(r)==2: test = False if r[0].strip()[0].lower()=='t': test = True r[0]=r[0].strip()[1:] if r[1].strip()[0].lower()=='t': r[1]=r[1].strip()[1:] for i in xrange(int(r[0]), int(r[1])+1): if test: content.append(Path(test_data.extract(i), 'T%d<br>'%i)) else: content.append(Path(train_data.extract(i), '%d<br>'%i)) elif len(r)>2: self.send_error(404, 'File not found') return None content.write(f) length = f.tell() f.seek(0) self.send_response(200) encoding = sys.getfilesystemencoding() self.send_header("Content-type", "text/html; charset=%s" % encoding) self.send_header("Content-Length", str(length)) self.end_headers() return f
#!/usr/bin/env python from data.hdf5 import taxi_it from visualizer import Vlist, Point if __name__ == '__main__': points = Vlist(heatmap=True) for line in taxi_it('test'): for (lat, lon) in zip(line['latitude'], line['longitude']): points.append(Point(lat, lon)) points.save('test positions')
def send_extract(self, query): f = StringIO() query = urllib.unquote(query) content = Vlist() for (i, sub) in enumerate(query.split(',')): r = sub.split('-') if len(r) == 1: if sub.strip()[0].lower() == 't': sub = sub.strip()[1:] content.append( Path(test_data.extract(int(sub)), 'T%s<br>' % sub)) else: content.append( Path(train_data.extract(int(sub)), '%s<br>' % sub)) elif len(r) == 2: test = False if r[0].strip()[0].lower() == 't': test = True r[0] = r[0].strip()[1:] if r[1].strip()[0].lower() == 't': r[1] = r[1].strip()[1:] for i in xrange(int(r[0]), int(r[1]) + 1): if test: content.append( Path(test_data.extract(i), 'T%d<br>' % i)) else: content.append( Path(train_data.extract(i), '%d<br>' % i)) elif len(r) > 2: self.send_error(404, 'File not found') return None content.write(f) length = f.tell() f.seek(0) self.send_response(200) encoding = sys.getfilesystemencoding() self.send_header("Content-type", "text/html; charset=%s" % encoding) self.send_header("Content-Length", str(length)) self.end_headers() return f
#!/usr/bin/env python from data.hdf5 import taxi_it from visualizer import Vlist, Point if __name__ == '__main__': it = taxi_it('stands') next(it) points = Vlist() for (i, line) in enumerate(it): points.append( Point(line['stands_latitude'], line['stands_longitude'], 'Stand (%d): %s' % (i + 1, line['stands_name']))) points.save('stands')
#!/usr/bin/env python from data.hdf5 import taxi_it from visualizer import Vlist, Point if __name__ == '__main__': it = taxi_it('stands') next(it) # Ignore the "no stand" entry points = Vlist() for (i, line) in enumerate(it): points.append(Point(line['stands_latitude'], line['stands_longitude'], 'Stand (%d): %s' % (i+1, line['stands_name']))) points.save('stands')
#!/usr/bin/env python from data.hdf5 import taxi_it from visualizer import Vlist, Point _sample_size = 5000 if __name__ == '__main__': points = Vlist(cluster=True) for line in taxi_it('train'): if len(line['latitude']) > 0: points.append(Point(line['latitude'][-1], line['longitude'][-1])) if len(points) >= _sample_size: break points.save('destinations (cluster)') points.cluster = False points.heatmap = True points.save('destinations (heatmap)')
#!/usr/bin/env python from data.hdf5 import taxi_it from visualizer import Vlist, Point _sample_size = 5000 if __name__ == '__main__': points = Vlist(cluster=True) for line in taxi_it('train'): if len(line['latitude'])>0: points.append(Point(line['latitude'][-1], line['longitude'][-1])) if len(points) >= _sample_size: break points.save('destinations (cluster)') points.cluster = False points.heatmap = True points.save('destinations (heatmap)')