Example #1
0
 def handle_raw_stereo(self, msg):
     size = (msg.left_info.width, msg.left_info.height)
     if self.vo == None:
         cam = camera.StereoCamera(msg.right_info)
         self.vo = VisualOdometer(cam,
                                  scavenge=False,
                                  inlier_error_threshold=3.0,
                                  sba=None,
                                  inlier_thresh=100,
                                  position_keypoint_thresh=0.2,
                                  angle_keypoint_thresh=0.15)
     pair = [imgAdapted(i, size) for i in [msg.left_image, msg.right_image]]
     af = SparseStereoFrame(pair[0],
                            pair[1],
                            feature_detector=self.fd,
                            descriptor_scheme=self.ds)
     pose = self.vo.handle_frame(af)
     p = deprecated_msgs.msg.VOPose()
     p.inliers = self.vo.inl
     # XXX - remove after camera sets frame_id
     p.header = roslib.msg.Header(0, msg.header.stamp, "stereo_link")
     p.pose = geometry_msgs.msg.Pose(
         geometry_msgs.msg.Point(*pose.xform(0, 0, 0)),
         geometry_msgs.msg.Quaternion(*pose.quaternion()))
     self.pub_vo.publish(p)
Example #2
0
  def xtest_smoke_bag(self):
    import rosrecord
    import visualize

    class imgAdapted:
      def __init__(self, i):
        self.i = i
        self.size = (i.width, i.height)
      def tostring(self):
        return self.i.data

    cam = None
    filename = "/u/prdata/videre-bags/loop1-mono.bag"
    filename = "/u/prdata/videre-bags/vo1.bag"
    framecounter = 0
    for topic, msg in rosrecord.logplayer(filename):
      print framecounter
      if rospy.is_shutdown():
        break
      #print topic,msg
      if topic == "/videre/cal_params" and not cam:
        cam = camera.VidereCamera(msg.data)
        vo = VisualOdometer(cam)
      if cam and topic == "/videre/images":
        if -1 <= framecounter and framecounter < 360:
          imgR = imgAdapted(msg.images[0])
          imgL = imgAdapted(msg.images[1])
          af = SparseStereoFrame(imgL, imgR)
          pose = vo.handle_frame(af)
          visualize.viz(vo, af)
        framecounter += 1
    print "distance from start:", vo.pose.distance()
    vo.summarize_timers()
Example #3
0
    def xtest_smoke_bag(self):
        import rosrecord
        import visualize

        class imgAdapted:
            def __init__(self, i):
                self.i = i
                self.size = (i.width, i.height)

            def tostring(self):
                return self.i.data

        cam = None
        filename = "/u/prdata/videre-bags/loop1-mono.bag"
        filename = "/u/prdata/videre-bags/vo1.bag"
        framecounter = 0
        for topic, msg in rosrecord.logplayer(filename):
            print framecounter
            if rospy.is_shutdown():
                break
            #print topic,msg
            if topic == "/videre/cal_params" and not cam:
                cam = camera.VidereCamera(msg.data)
                vo = VisualOdometer(cam)
            if cam and topic == "/videre/images":
                if -1 <= framecounter and framecounter < 360:
                    imgR = imgAdapted(msg.images[0])
                    imgL = imgAdapted(msg.images[1])
                    af = SparseStereoFrame(imgL, imgR)
                    pose = vo.handle_frame(af)
                    visualize.viz(vo, af)
                framecounter += 1
        print "distance from start:", vo.pose.distance()
        vo.summarize_timers()
Example #4
0
    def xtest_image_pan(self):
        cam = camera.Camera((1.0, 1.0, 89.23, 320., 320., 240.0))
        vo = VisualOdometer(cam)
        prev_af = None
        pose = None
        im = Image.open("img1.pgm")
        for x in [0,
                  5]:  # range(0,100,10) + list(reversed(range(0, 100, 10))):
            lf = im.crop((x, 0, x + 640, 480))
            rf = im.crop((x, 0, x + 640, 480))
            af = SparseStereoFrame(lf, rf)

            vo.find_keypoints(af)

            vo.find_disparities(af)
            vo.collect_descriptors(af)

            if prev_af:
                pairs = vo.temporal_match(prev_af, af)
                pose = vo.solve(prev_af.kp, af.kp, pairs)
                for i in range(10):
                    old = prev_af.kp[pairs[i][0]]
                    new = af.kp[pairs[i][1]]
                    print old, new, new[0] - old[0]
            prev_af = af
            print "frame", x, "has", len(af.kp), "keypoints", pose
Example #5
0
  def xtest_image_pan(self):
    cam = camera.Camera((1.0, 1.0, 89.23, 320., 320., 240.0))
    vo = VisualOdometer(cam)
    prev_af = None
    pose = None
    im = Image.open("img1.pgm")
    for x in [0,5]: # range(0,100,10) + list(reversed(range(0, 100, 10))):
      lf = im.crop((x, 0, x + 640, 480))
      rf = im.crop((x, 0, x + 640, 480))
      af = SparseStereoFrame(lf, rf)

      vo.find_keypoints(af)

      vo.find_disparities(af)
      vo.collect_descriptors(af)

      if prev_af:
        pairs = vo.temporal_match(prev_af, af)
        pose = vo.solve(prev_af.kp, af.kp, pairs)
        for i in range(10):
          old = prev_af.kp[pairs[i][0]]
          new = af.kp[pairs[i][1]]
          print old, new, new[0] - old[0]
      prev_af = af
      print "frame", x, "has", len(af.kp), "keypoints", pose
Example #6
0
 def display_params(self, iar):
     if not self.vo:
         cam = camera.VidereCamera(iar.data)
         print "cam.params", cam.params
         self.vo = VisualOdometer(cam)
         self.started = None
         if self.mode == 'learn':
             self.library = set()
         self.previous_keyframe = None
         self.know_state = 'lost'
         self.best_show_pose = None
         self.mymarker1.floor()
Example #7
0
    def test_solve_spin(self):
        # Test process with one 'ideal' camera, one real-world Videre
        camera_param_list = [
            (200.0, 200.0, 3.00, 320.0, 320.0, 240.0),
            (389.0, 389.0, 89.23, 323.42, 323.42, 274.95),
        ]
        for cam_params in camera_param_list:
            cam = camera.Camera(cam_params)
            vo = VisualOdometer(cam)

            kps = []
            model = [(x * 200, y * 200, z * 200) for x in range(-3, 4)
                     for y in range(-3, 4) for z in range(-3, 4)]
            for angle in range(80):
                im = Image.new("L", (640, 480))
                theta = (angle / 80.) * (pi * 2)
                R = rotation(theta, 0, 1, 0)
                kp = []
                for (mx, my, mz) in model:
                    pp = None
                    pt_camera = (numpy.dot(numpy.array([mx, my, mz]), R))
                    (cx, cy, cz) = numpy.array(pt_camera).ravel()
                    if cz > 100:
                        (x, y, d) = cam.cam2pix(cx, cy, cz)
                        if 0 <= x and x < 640 and 0 <= y and y < 480:
                            pp = (x, y, d)
                            circle(im, x, y, 2, 255)
                    kp.append(pp)
                kps.append(kp)

            expected_rot = numpy.array(
                numpy.mat(rotation(2 * pi / 80, 0, 1, 0))).ravel()

            for i in range(100):
                i0 = i % 80
                i1 = (i + 1) % 80
                pairs = [(i, i) for i in range(len(model))
                         if (kps[i0][i] and kps[i1][i])]

                def sanify(L, sub):
                    return [i or sub for i in L]

                (inliers, rot, shift) = vo.solve(sanify(kps[i0], (0, 0, 0)),
                                                 sanify(kps[i1], (0, 0, 0)),
                                                 pairs)
                self.assert_(inliers != 0)
                self.assertAlmostEqual(shift[0], 0.0, 3)
                self.assertAlmostEqual(shift[1], 0.0, 3)
                self.assertAlmostEqual(shift[2], 0.0, 3)
                for (et, at) in zip(rot, expected_rot):
                    self.assertAlmostEqual(et, at, 3)
Example #8
0
    def xtest_smoke(self):
        cam = camera.Camera((389.0, 389.0, 89.23, 323.42, 323.42, 274.95))
        vo = VisualOdometer(cam)
        vo.reset_timers()
        dir = "/u/konolige/vslam/data/indoor1/"

        trail = []
        prev_scale = None

        schedule = [(f + 1000)
                    for f in (range(0, 100) + range(100, 0, -1) + [0] * 10)]
        schedule = range(1507)
        schedule = range(30)
        for f in schedule:
            lf = Image.open("%s/left-%04d.ppm" % (dir, f))
            rf = Image.open("%s/right-%04d.ppm" % (dir, f))
            lf.load()
            rf.load()
            af = SparseStereoFrame(lf, rf)

            vo.handle_frame(af)
            print f, vo.inl
            trail.append(numpy.array(vo.pose.M[0:3, 3].T)[0])

        def d(a, b):
            d = a - b
            return sqrt(numpy.dot(d, d.conj()))

        print "covered   ", sum([d(a, b) for (a, b) in zip(trail, trail[1:])])
        print "from start", d(trail[0], trail[-1]), trail[0] - trail[-1]

        vo.summarize_timers()
        print vo.log_keyframes
Example #9
0
    def handle_raw_stereo(self, msg):
        print "incoming picture  ", msg.header.stamp.to_seconds()

        size = (msg.left_info.width, msg.left_info.height)
        cam = camera.StereoCamera(msg.right_info)
        if self.vo == None:
            self.vo = VisualOdometer(cam,
                                     scavenge=False,
                                     inlier_error_threshold=3.0,
                                     sba=None,
                                     inlier_thresh=100,
                                     position_keypoint_thresh=0.2,
                                     angle_keypoint_thresh=0.15)
            self.keys = set()
            self.v = Vis('raw stereo')

        #pair = [Image.fromstring("L", size, i.uint8_data.data) for i in [ msg.left_image, msg.right_image ]]
        pair = [dcamImage(i) for i in [msg.left_image, msg.right_image]]
        af = SparseStereoFrame(pair[0],
                               pair[1],
                               feature_detector=self.fd,
                               descriptor_scheme=self.ds)
        af.t = msg.header.stamp.to_seconds()

        self.vo.handle_frame(af)

        self.v.show(msg.left_image.uint8_data.data, [])
        k = self.vo.keyframe
        if (not (k.id in self.keys)):
            self.keys.add(k.id)
            picture = Picture(k.features(), k.descriptors())
            self.pm.newpic(k.t, cam, picture, True)

        if 0:
            picture = Picture(af.features(), af.descriptors())
            self.pm.newpic(af.t, cam, picture, False)

        while True:
            if self.tfq.qsize() == 0:
                break
            tfmsg = self.tfq.get()
            if min([t.header.stamp.to_seconds() for t in tfmsg.transforms
                    ]) > (msg.header.stamp.to_seconds() + 1.0):
                break
            self.handle_tf(tfmsg)

        self.pmlock.acquire()
        self.pm.resolve(self.transformer)
        self.pmlock.release()
Example #10
0
class VO:

  def __init__(self):
    rospy.Subscriber('/stereo/raw_stereo', stereo_msgs.msg.RawStereo, self.handle_raw_stereo, queue_size=2, buff_size=7000000)

    self.pub_vo = rospy.Publisher("/vo", deprecated_msgs.msg.VOPose)

    self.vo = None
    self.modulo = 0
    self.fd = FeatureDetectorFast(300)
    self.ds = DescriptorSchemeCalonder()

  def handle_raw_stereo(self, msg):
    size = (msg.left_info.width, msg.left_info.height)
    if self.vo == None:
      cam = camera.StereoCamera(msg.right_info)
      self.vo = VisualOdometer(cam, scavenge = False, 
                          inlier_error_threshold = 3.0, sba = None,
                          inlier_thresh = 100,
                          position_keypoint_thresh = 0.2, angle_keypoint_thresh = 0.15)
    pair = [imgAdapted(i, size) for i in [ msg.left_image, msg.right_image ]]
    af = SparseStereoFrame(pair[0], pair[1], feature_detector = self.fd, descriptor_scheme = self.ds)
    pose = self.vo.handle_frame(af)
    p = deprecated_msgs.msg.VOPose()
    p.inliers = self.vo.inl
    # XXX - remove after camera sets frame_id
    p.header = roslib.msg.Header(0, msg.header.stamp, "stereo_link")
    p.pose = geometry_msgs.msg.Pose(geometry_msgs.msg.Point(*pose.xform(0,0,0)), geometry_msgs.msg.Quaternion(*pose.quaternion()))
    self.pub_vo.publish(p)
Example #11
0
class VODemo:
    vo = None
    frame = 0

    def display_params(self, iar):
        if not self.vo:
            matrix = []  # Matrix will be in row,column order
            section = ""
            in_proj = 0
            for l in iar.data.split('\n'):
                if len(l) > 0 and l[0] == '[':
                    section = l.strip('[]')
                ws = l.split()
                if ws != []:
                    if section == "right camera" and ws[0].isalpha():
                        in_proj = (ws[0] == 'proj')
                    elif in_proj:
                        matrix.append([float(s) for s in l.split()])
            Fx = matrix[0][0]
            Fy = matrix[1][1]
            Cx = matrix[0][2]
            Cy = matrix[1][2]
            Tx = -matrix[0][3] / Fx
            self.params = (Fx, Fy, Tx, Cx, Cx, Cy)
            cam = camera.Camera(self.params)
            self.vo = VisualOdometer(cam)
            self.started = None

    def display_array(self, iar):
        diag = ""
        af = None
        if self.vo:
            if not self.started:
                self.started = time.time()
            if 0:
                time.sleep(0.028)
            else:
                imgR = imgAdapted(iar.images[0])
                imgL = imgAdapted(iar.images[1])
                af = SparseStereoFrame(imgL, imgR)
                if 1:
                    pose = self.vo.handle_frame(af)
                    diag = "%d inliers, moved %.1f" % (self.vo.inl,
                                                       pose.distance())
            if (self.frame % 1) == 0:
                took = time.time() - self.started
                print "%4d: %5.1f [%f fps]" % (self.frame, took,
                                               self.frame / took), diag
            self.frame += 1

        #print "got message", len(iar.images)
        #print iar.images[0].width
        if SEE:
            right = ut.ros2cv(iar.images[0])
            left = ut.ros2cv(iar.images[1])
            hg.cvShowImage('channel L', left)
            hg.cvShowImage('channel R', right)
            hg.cvWaitKey(5)
Example #12
0
  def xtest_smoke(self):
    cam = camera.Camera((389.0, 389.0, 89.23, 323.42, 323.42, 274.95))
    vo = VisualOdometer(cam)
    vo.reset_timers()
    dir = "/u/konolige/vslam/data/indoor1/"

    trail = []
    prev_scale = None

    schedule = [(f+1000) for f in (range(0,100) + range(100,0,-1) + [0]*10)]
    schedule = range(1507)
    schedule = range(30)
    for f in schedule:
      lf = Image.open("%s/left-%04d.ppm" % (dir,f))
      rf = Image.open("%s/right-%04d.ppm" % (dir,f))
      lf.load()
      rf.load()
      af = SparseStereoFrame(lf, rf)

      vo.handle_frame(af)
      print f, vo.inl
      trail.append(numpy.array(vo.pose.M[0:3,3].T)[0])
    def d(a,b):
      d = a - b
      return sqrt(numpy.dot(d,d.conj()))
    print "covered   ", sum([d(a,b) for (a,b) in zip(trail, trail[1:])])
    print "from start", d(trail[0], trail[-1]), trail[0] - trail[-1]

    vo.summarize_timers()
    print vo.log_keyframes
Example #13
0
  def test_solve_spin(self):
    # Test process with one 'ideal' camera, one real-world Videre
    camera_param_list = [
        (200.0, 200.0, 3.00,  320.0, 320.0, 240.0),
        (389.0, 389.0, 89.23, 323.42, 323.42, 274.95),
    ]
    for cam_params in camera_param_list:
      cam = camera.Camera(cam_params)
      vo = VisualOdometer(cam)

      kps = []
      model = [ (x*200,y*200,z*200) for x in range(-3,4) for y in range(-3,4) for z in range(-3,4) ]
      for angle in range(80):
        im = Image.new("L", (640, 480))
        theta = (angle / 80.) * (pi * 2)
        R = rotation(theta, 0, 1, 0)
        kp = []
        for (mx,my,mz) in model:
          pp = None
          pt_camera = (numpy.dot(numpy.array([mx,my,mz]), R))
          (cx,cy,cz) = numpy.array(pt_camera).ravel()
          if cz > 100:
            (x,y,d) = cam.cam2pix(cx, cy, cz)
            if 0 <= x and x < 640 and 0 <= y and y < 480:
              pp = (x,y,d)
              circle(im, x, y, 2, 255)
          kp.append(pp)
        kps.append(kp)

      expected_rot = numpy.array(numpy.mat(rotation(2 * pi / 80, 0, 1, 0))).ravel()

      for i in range(100):
        i0 = i % 80
        i1 = (i + 1) % 80
        pairs = [ (i,i) for i in range(len(model)) if (kps[i0][i] and kps[i1][i]) ]
        def sanify(L, sub):
          return [i or sub for i in L]
        (inliers, rot, shift) = vo.solve(sanify(kps[i0],(0,0,0)), sanify(kps[i1],(0,0,0)), pairs)
        self.assert_(inliers != 0)
        self.assertAlmostEqual(shift[0], 0.0, 3)
        self.assertAlmostEqual(shift[1], 0.0, 3)
        self.assertAlmostEqual(shift[2], 0.0, 3)
        for (et, at) in zip(rot, expected_rot):
          self.assertAlmostEqual(et, at, 3)
Example #14
0
    def test_solve_rotation(self):

        cam = camera.Camera((389.0, 389.0, 89.23, 323.42, 323.42, 274.95))
        vo = VisualOdometer(cam)

        model = []

        radius = 1200.0

        kps = []
        for angle in range(80):
            im = Image.new("L", (640, 480))
            theta = (angle / 80.) * (pi * 2)
            R = rotation(theta, 0, 1, 0)
            kp = []
            for s in range(7):
                for t in range(7):
                    y = -400
                    pt_model = numpy.array([110 * (s - 3), y,
                                            110 * (t - 3)]).transpose()
                    pt_camera = (numpy.dot(pt_model, R) +
                                 numpy.array([0, 0, radius])).transpose()
                    (cx, cy, cz) = [float(i) for i in pt_camera]
                    (x, y, d) = cam.cam2pix(cx, cy, cz)
                    reversed = cam.pix2cam(x, y, d)
                    self.assertAlmostEqual(cx, reversed[0], 3)
                    self.assertAlmostEqual(cy, reversed[1], 3)
                    self.assertAlmostEqual(cz, reversed[2], 3)
                    kp.append((x, y, d))
                    circle(im, x, y, 2, 255)
            kps.append(kp)

        expected_shift = 2 * radius * sin(pi / 80)

        for i in range(100):
            i0 = i % 80
            i1 = (i + 1) % 80
            pairs = zip(range(len(kps[i0])), range(len(kps[i1])))
            (inliers, rod, shift) = vo.solve(kps[i0], kps[i1], pairs)
            actual_shift = sqrt(shift[0] * shift[0] + shift[1] * shift[1] +
                                shift[2] * shift[2])

            # Should be able to estimate camera shift to nearest thousandth of mm
            self.assertAlmostEqual(actual_shift, expected_shift, 3)
Example #15
0
class VODemo:
    vo = None
    frame = 0

    def display_params(self, iar):
        if not self.vo:
            matrix = []  # Matrix will be in row,column order
            section = ""
            in_proj = 0
            for l in iar.data.split("\n"):
                if len(l) > 0 and l[0] == "[":
                    section = l.strip("[]")
                ws = l.split()
                if ws != []:
                    if section == "right camera" and ws[0].isalpha():
                        in_proj = ws[0] == "proj"
                    elif in_proj:
                        matrix.append([float(s) for s in l.split()])
            Fx = matrix[0][0]
            Fy = matrix[1][1]
            Cx = matrix[0][2]
            Cy = matrix[1][2]
            Tx = -matrix[0][3] / Fx
            self.params = (Fx, Fy, Tx, Cx, Cx, Cy)
            cam = camera.Camera(self.params)
            self.vo = VisualOdometer(cam)
            self.started = None

    def display_array(self, iar):
        diag = ""
        af = None
        if self.vo:
            if not self.started:
                self.started = time.time()
            if 0:
                time.sleep(0.028)
            else:
                imgR = imgAdapted(iar.images[0])
                imgL = imgAdapted(iar.images[1])
                af = SparseStereoFrame(imgL, imgR)
                if 1:
                    pose = self.vo.handle_frame(af)
                    diag = "%d inliers, moved %.1f" % (self.vo.inl, pose.distance())
            if (self.frame % 1) == 0:
                took = time.time() - self.started
                print "%4d: %5.1f [%f fps]" % (self.frame, took, self.frame / took), diag
            self.frame += 1

        # print "got message", len(iar.images)
        # print iar.images[0].width
        if SEE:
            right = ut.ros2cv(iar.images[0])
            left = ut.ros2cv(iar.images[1])
            hg.cvShowImage("channel L", left)
            hg.cvShowImage("channel R", right)
            hg.cvWaitKey(5)
Example #16
0
  def test_solve_rotation(self):

    cam = camera.Camera((389.0, 389.0, 89.23, 323.42, 323.42, 274.95))
    vo = VisualOdometer(cam)

    model = []

    radius = 1200.0

    kps = []
    for angle in range(80):
      im = Image.new("L", (640, 480))
      theta = (angle / 80.) * (pi * 2)
      R = rotation(theta, 0, 1, 0)
      kp = []
      for s in range(7):
        for t in range(7):
          y = -400
          pt_model = numpy.array([110 * (s - 3), y, 110 * (t - 3)]).transpose()
          pt_camera = (numpy.dot(pt_model, R) + numpy.array([0, 0, radius])).transpose()
          (cx, cy, cz) = [ float(i) for i in pt_camera ]
          (x,y,d) = cam.cam2pix(cx, cy, cz)
          reversed = cam.pix2cam(x, y, d)
          self.assertAlmostEqual(cx, reversed[0], 3)
          self.assertAlmostEqual(cy, reversed[1], 3)
          self.assertAlmostEqual(cz, reversed[2], 3)
          kp.append((x,y,d))
          circle(im, x, y, 2, 255)
      kps.append(kp)

    expected_shift = 2 * radius * sin(pi / 80)

    for i in range(100):
      i0 = i % 80
      i1 = (i + 1) % 80
      pairs = zip(range(len(kps[i0])), range(len(kps[i1])))
      (inliers, rod, shift) = vo.solve(kps[i0], kps[i1], pairs)
      actual_shift = sqrt(shift[0]*shift[0] + shift[1]*shift[1] + shift[2]*shift[2])

      # Should be able to estimate camera shift to nearest thousandth of mm
      self.assertAlmostEqual(actual_shift, expected_shift, 3)
Example #17
0
 def display_params(self, iar):
   if not self.vo:
     cam = camera.VidereCamera(iar.data)
     print "cam.params", cam.params
     self.vo = VisualOdometer(cam)
     self.started = None
     if self.mode == 'learn':
       self.library = set()
     self.previous_keyframe = None
     self.know_state = 'lost'
     self.best_show_pose = None
     self.mymarker1.floor()
Example #18
0
  def test_stereo(self):
    cam = camera.VidereCamera(open("wallcal.ini").read())
    #lf = Image.open("wallcal-L.bmp").convert("L")
    #rf = Image.open("wallcal-R.bmp").convert("L")
    for offset in [ 1, 10, 10.25, 10.5, 10.75, 11, 63]:
      lf = Image.open("snap.png").convert("L")
      rf = Image.open("snap.png").convert("L")
      rf = rf.resize((16 * 640, 480))
      rf = ImageChops.offset(rf, -int(offset * 16), 0)
      rf = rf.resize((640,480), Image.ANTIALIAS)
      for gradient in [ False, True ]:
        af = SparseStereoFrame(lf, rf, gradient)
        vo = VisualOdometer(cam)
        vo.find_keypoints(af)
        vo.find_disparities(af)
        error = offset - sum([d for (x,y,d) in af.kp]) / len(af.kp)
        self.assert_(abs(error) < 0.25) 

    if 0:
      scribble = Image.merge("RGB", (lf,rf,Image.new("L", lf.size))).resize((1280,960))
      #scribble = Image.merge("RGB", (Image.fromstring("L", lf.size, af0.lgrad),Image.fromstring("L", lf.size, af0.rgrad),Image.new("L", lf.size))).resize((1280,960))
      draw = ImageDraw.Draw(scribble)
      for (x,y,d) in af0.kp:
        draw.line([ (2*x,2*y), (2*x-2*d,2*y) ], fill = (255,255,255))
      for (x,y,d) in af1.kp:
        draw.line([ (2*x,2*y+1), (2*x-2*d,2*y+1) ], fill = (0,0,255))
Example #19
0
 def display_params(self, iar):
     if not self.vo:
         matrix = []  # Matrix will be in row,column order
         section = ""
         in_proj = 0
         for l in iar.data.split('\n'):
             if len(l) > 0 and l[0] == '[':
                 section = l.strip('[]')
             ws = l.split()
             if ws != []:
                 if section == "right camera" and ws[0].isalpha():
                     in_proj = (ws[0] == 'proj')
                 elif in_proj:
                     matrix.append([float(s) for s in l.split()])
         Fx = matrix[0][0]
         Fy = matrix[1][1]
         Cx = matrix[0][2]
         Cy = matrix[1][2]
         Tx = -matrix[0][3] / Fx
         self.params = (Fx, Fy, Tx, Cx, Cx, Cy)
         cam = camera.Camera(self.params)
         self.vo = VisualOdometer(cam)
         self.started = None
Example #20
0
    def params(self, pmsg):

        if not self.vo:
            self.cam = camera.VidereCamera(pmsg.data)
            if DESCRIPTOR == 'CALONDER':
                self.vo = VisualOdometer(
                    self.cam, descriptor_scheme=DescriptorSchemeCalonder())
                self.desc_diff_thresh = 0.001
            elif DESCRIPTOR == 'SAD':
                self.vo = Tracker(self.cam)
                self.desc_diff_thresh = 2000.0
            else:
                print "Unknown descriptor"
                return
Example #21
0
class VO:

  def __init__(self, decimate):
    rospy.TopicSub('/videre/images', ImageArray, self.handle_array, queue_size=2, buff_size=7000000)
    rospy.TopicSub('/videre/cal_params', String, self.handle_params)

    self.pub_vo = rospy.Publisher("/vo", VOPose)

    self.vo = None
    self.decimate = decimate
    self.modulo = 0

  def handle_params(self, iar):
    if not self.vo:
      cam = camera.VidereCamera(iar.data)
      self.vo = VisualOdometer(cam)
      self.intervals = []
      self.took = []

  def handle_array(self, iar):
    if self.vo:
      t0 = time.time()
      self.intervals.append(t0)
      if (self.modulo % self.decimate) == 0:
        imgR = imgAdapted(iar.images[0])
        imgL = imgAdapted(iar.images[1])
        af = SparseStereoFrame(imgL, imgR)
        if 1:
          pose = self.vo.handle_frame(af)
        else:
          pose = Pose()
        #print self.vo.num_frames, pose.xform(0,0,0), pose.quaternion()
        p = VOPose()
        p.inliers = self.vo.inl
        # XXX - remove after camera sets frame_id
        p.header = rostools.msg.Header(0, iar.header.stamp, "stereo_link")
        p.pose = stdmsg.Pose(stdmsg.Point(*pose.xform(0,0,0)), stdmsg.Quaternion(*pose.quaternion()))
        self.pub_vo.publish(p)
      self.modulo += 1
      self.took.append(time.time() - t0)
      if (len(self.took) % 100) == 0:
        print len(self.took)

  def dump(self):
    iv = self.intervals
    took = self.took
    print "Incoming frames: %d in %f, so %fms" % (len(iv), iv[-1] - iv[0], (iv[-1] - iv[0]) / len(iv))
    print "Time in callback: %fms" % (sum(took) / len(took))
Example #22
0
    def test_sad(self):
        cam = camera.Camera((389.0, 389.0, 89.23, 323.42, 323.42, 274.95))
        vo = VisualOdometer(cam)

        class adapter:
            def __init__(self, im):
                self.rawdata = im.tostring()
                self.size = im.size

        im = adapter(Image.open("img1.pgm"))
        vo.feature_detector.thresh *= 15
        vo.find_keypoints(im)
        im.kp = im.kp2d
        vo.collect_descriptors(im)
        print len(im.kp)
        matches = vo.temporal_match(im, im)
        for (a, b) in matches:
            self.assert_(a == b)
Example #23
0
def main(args):

    f = open("pruned.pickle", "r")
    cam = pickle.load(f)
    db = pickle.load(f)
    f.close()

    print cam.params
    vo = VisualOdometer(cam)

    library = set()
    for (id, pose, kp, desc) in db:
        lf = LibraryFrame(id, pose, kp, desc)
        library.add(lf)

    corr = Corrector(vo, library)

    rospy.ready('corrector')
    try:
        corr.workloop()
    except KeyboardInterrupt:
        print "shutting down"
Example #24
0
 def display_params(self, iar):
     if not self.vo:
         matrix = []  # Matrix will be in row,column order
         section = ""
         in_proj = 0
         for l in iar.data.split("\n"):
             if len(l) > 0 and l[0] == "[":
                 section = l.strip("[]")
             ws = l.split()
             if ws != []:
                 if section == "right camera" and ws[0].isalpha():
                     in_proj = ws[0] == "proj"
                 elif in_proj:
                     matrix.append([float(s) for s in l.split()])
         Fx = matrix[0][0]
         Fy = matrix[1][1]
         Cx = matrix[0][2]
         Cy = matrix[1][2]
         Tx = -matrix[0][3] / Fx
         self.params = (Fx, Fy, Tx, Cx, Cx, Cy)
         cam = camera.Camera(self.params)
         self.vo = VisualOdometer(cam)
         self.started = None
Example #25
0
  def test_sad(self):
    cam = camera.Camera((389.0, 389.0, 89.23, 323.42, 323.42, 274.95))
    vo = VisualOdometer(cam)

    class adapter:
      def __init__(self, im):
        self.rawdata = im.tostring()
        self.size = im.size

    im = adapter(Image.open("img1.pgm"))
    vo.feature_detector.thresh *= 15
    vo.find_keypoints(im)
    im.kp = im.kp2d
    vo.collect_descriptors(im)
    print len(im.kp)
    matches = vo.temporal_match(im, im)
    for (a,b) in matches:
      self.assert_(a == b)
Example #26
0
import rostest
import rospy

import Image

from stereo_utils import camera
import pylab, numpy

from stereo import ComputedDenseStereoFrame, SparseStereoFrame
from visualodometer import VisualOdometer, Pose, DescriptorSchemeCalonder, DescriptorSchemeSAD, FeatureDetectorFast, FeatureDetector4x4, FeatureDetectorStar, FeatureDetectorHarris, from_xyz_euler

stereo_cam = camera.Camera(
    (389.0, 389.0, 89.23 * 1e-3, 323.42, 323.42, 274.95))

vo = VisualOdometer(stereo_cam,
                    feature_detector=FeatureDetectorStar(),
                    descriptor_scheme=DescriptorSchemeCalonder())

(f0, f1) = [
    SparseStereoFrame(Image.open("f%d-left.png" % i),
                      Image.open("f%d-right.png" % i)) for i in [0, 1]
]

vo.setup_frame(f0)
vo.setup_frame(f1)

pairs = vo.temporal_match(f0, f1)
for (a, b) in pairs:
    pylab.plot([f0.kp[a][0], f1.kp[b][0]], [f0.kp[a][1], f1.kp[b][1]])
pylab.imshow(numpy.fromstring(f0.lf.tostring(), numpy.uint8).reshape(480, 640),
             cmap=pylab.cm.gray)
Example #27
0
    1221, 1225, 1227, 1233, 1237, 1244, 1250, 1258, 1263, 1269, 1274, 1280,
    1285, 1291, 1298, 1305, 1308, 1313, 1317, 1320, 1323, 1325, 1328, 1329,
    1332, 1334, 1335, 1337, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346,
    1347, 1348, 1349, 1350, 1352, 1354, 1355, 1356, 1357, 1358, 1359, 1360,
    1361, 1362, 1363, 1367, 1372, 1377, 1379, 1381, 1382, 1383, 1384, 1385,
    1386, 1388, 1391, 1394, 1395, 1399, 1404, 1411, 1418, 1421, 1423, 1429,
    1432, 1436, 1438, 1440, 1444, 1447, 1455
][::100])

# Example 2: load frames 560,570... 940 from loop1-mono.bag

# (cam, afs) = load_from_bag( "/u/prdata/videre-bags/loop1-mono.bag", range(560, 941, 100))

vos = [
    VisualOdometer(cam,
                   feature_detector=FeatureDetectorStar(),
                   descriptor_scheme=DescriptorSchemeCalonder()),
    VisualOdometer(cam,
                   feature_detector=FeatureDetectorFast(),
                   descriptor_scheme=DescriptorSchemeCalonder()),
    VisualOdometer(cam,
                   feature_detector=FeatureDetectorHarris(),
                   descriptor_scheme=DescriptorSchemeCalonder())
]


def metric(af0, af1):
    """ Given a pair of frames, return the distance metric using inliers from the solved pose """
    pairs = vo.temporal_match(af0, af1)
    if len(pairs) > 10:
        (inl, rot, shift) = vo.solve(af0.kp, af1.kp, pairs)
Example #28
0
for filename in sys.argv[1:]:
  cam = None
  prev_frame = None
  framecounter = 0
  all_ds = []
  sos = numpy.array([.0, .0, .0])

  for topic, msg in rosrecord.logplayer(filename):
    if rospy.is_shutdown():
      break

    if topic.endswith("videre/cal_params") and not cam:
      cam = camera.VidereCamera(msg.data)

      vo = VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD())

    if cam and topic.endswith("videre/images"):
      imgR = imgAdapted(msg.images[0])
      imgL = imgAdapted(msg.images[1])
      assert msg.images[0].label == "right_rectified"
      assert msg.images[1].label == "left_rectified"

      frame = SparseStereoFrame(imgL, imgR)
      vo.find_keypoints(frame)
      vo.find_disparities(frame)
      #frame.kp = [ (x,y,d) for (x,y,d) in frame.kp if d > 8]
      all_ds += [ d for (x,y,d) in frame.kp ]

      vo.collect_descriptors(frame)
      if prev_frame:
Example #29
0
import cPickle as pickle

import math
import random
import time
import sys
random.seed(0)

cam = camera.Camera((432.0, 432.0, 0.088981018518518529, 313.78210000000001,
                     313.78210000000001, 220.40700000000001))

vo = VisualOdometer(cam,
                    scavenge=False,
                    feature_detector=FeatureDetectorFast(),
                    descriptor_scheme=DescriptorSchemeCalonder(),
                    inlier_error_threshold=3.0,
                    sba=None,
                    inlier_thresh=99999,
                    position_keypoint_thresh=0.2,
                    angle_keypoint_thresh=0.15)

dir = "dump"

f = []
for i in [int(a) for a in sys.argv[1:]]:
    L = Image.open("%s/%06dL.png" % (dir, i))
    R = Image.open("%s/%06dR.png" % (dir, i))
    nf = SparseStereoFrame(L, R)
    vo.setup_frame(nf)
    nf.id = len(f)
    f.append(nf)
Example #30
0

class LibraryFrame:
    def __init__(self, pose, kp, desc):
        self.pose = pose
        self.kp = kp
        self.descriptors = desc


afs = {}
for (id, pose, kp, desc) in db:
    lf = LibraryFrame(pose, kp, desc)
    afs[id] = lf

vo = VisualOdometer(cam,
                    feature_detector=FeatureDetectorFast(),
                    descriptor_scheme=DescriptorSchemeSAD())

print "%d frames in library" % len(afs)
most_overlap = 99999
while most_overlap > 180:
    ov = []
    for i in afs.keys():
        for j in [k for k in afs.keys() if k > i]:
            (overlap, _) = vo.proximity(afs[i], afs[j])
            ov.append((overlap, i))
    print max(ov)
    most_overlap = max(ov)[0]
    del afs[max(ov)[1]]
print "%d frames in library" % len(afs)
Example #31
0
import pylab, numpy
import cPickle as pickle

import math
import random
import time
random.seed(0)

pg = TreeOptimizer3()
pg.initializeOnlineOptimization()

cam = camera.Camera((432.0, 432.0, 0.088981018518518529, 313.78210000000001,
                     313.78210000000001, 220.40700000000001))
#vo = VisualOdometer(cam)
vo = VisualOdometer(cam,
                    scavenge=False,
                    feature_detector=FeatureDetectorFast(),
                    descriptor_scheme=DescriptorSchemeCalonder())


def pg_constraint(pg, a, b, pose, inf):
    pg.addIncrementalEdge(a, b, pose.xform(0, 0, 0), pose.euler(), inf)


def newpose(id):
    xyz, euler = pg.vertex(id)
    return from_xyz_euler(xyz, euler)


def mk_covar(xyz, rp, yaw):
    return (1.0 / math.sqrt(xyz), 1.0 / math.sqrt(xyz), 1.0 / math.sqrt(xyz),
            1.0 / math.sqrt(rp), 1.0 / math.sqrt(rp), 1.0 / math.sqrt(yaw))
Example #32
0
for filename in sys.argv[1:]:
    cam = None
    prev_frame = None
    framecounter = 0
    all_ds = []
    sos = numpy.array([.0, .0, .0])

    for topic, msg in rosrecord.logplayer(filename):
        if rospy.is_shutdown():
            break

        if topic.endswith("videre/cal_params") and not cam:
            cam = camera.VidereCamera(msg.data)

            vo = VisualOdometer(cam,
                                feature_detector=FeatureDetectorFast(),
                                descriptor_scheme=DescriptorSchemeSAD())

        if cam and topic.endswith("videre/images"):
            imgR = imgAdapted(msg.images[0])
            imgL = imgAdapted(msg.images[1])
            assert msg.images[0].label == "right_rectified"
            assert msg.images[1].label == "left_rectified"

            frame = SparseStereoFrame(imgL, imgR)
            vo.find_keypoints(frame)
            vo.find_disparities(frame)
            #frame.kp = [ (x,y,d) for (x,y,d) in frame.kp if d > 8]
            all_ds += [d for (x, y, d) in frame.kp]

            vo.collect_descriptors(frame)
Example #33
0
        #vo = VisualOdometer(cam, inlier_thresh = 999999, descriptor_scheme = DescriptorSchemeCalonder())
        #vo2 = VisualOdometer(cam, inlier_thresh = 999999, descriptor_scheme = DescriptorSchemeSAD())

        #vo1 = VisualOdometer(cam, feature_detector = FeatureDetectorHarris(), descriptor_scheme = DescriptorSchemeCalonder())
        #vo2 = VisualOdometer(cam, feature_detector = FeatureDetectorHarris(), descriptor_scheme = DescriptorSchemeSAD())

        #vo = VisualOdometer(cam, descriptor_scheme = DescriptorSchemeCalonder())
        #vo2 = VisualOdometer(cam, descriptor_scheme = DescriptorSchemeSAD())

        #vo = VisualOdometer(cam, feature_detector = FeatureDetectorFast())
        #vo2 = VisualOdometer(cam, feature_detector = FeatureDetector4x4(FeatureDetectorFast))
        #vos = [vo1,vo2]
        vos = [
            VisualOdometer(cam,
                           feature_detector=FeatureDetectorFast(),
                           descriptor_scheme=DescriptorSchemeSAD()),
            #      VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD(), scavenge = True),
        ]

    start, end = 0, 10

    if cam and topic.endswith("videre/images"):
        print framecounter
        if framecounter == end:
            break
        if start <= framecounter and (framecounter % 1) == 0:
            imgR = imgAdapted(msg.images[0])
            imgL = imgAdapted(msg.images[1])

            w, h = imgL.size
Example #34
0
  def xtest_sim(self):
    # Test process with one 'ideal' camera, one real-world Videre
    camera_param_list = [
      # (200.0, 200.0, 3.00,  320.0, 320.0, 240.0),
      (389.0, 389.0, 89.23, 323.42, 323.42, 274.95)
    ]
    def move_combo(i):
      R = rotation(i*0.02, 0, 1, 0)
      S = (i * -0.01,0,0)
      return Pose(R, S)
    def move_translate(i):
      R = rotation(0, 0, 1, 0)
      S = (0,0,0)
      return Pose(R, S)
    def move_Yrot(i):
      R = rotation(i*0.02, 0, 1, 0)
      S = (i * 0,0,0)
      return Pose(R, S)

    for movement in [ move_combo, move_Yrot ]:
      for cam_params in camera_param_list:
        cam = camera.Camera(cam_params)

        kps = []
        model = [ (x*200,y*200,z*200) for x in range(-3,4) for y in range(-3,4) for z in range(-3,4) ]
        def rndimg():
          b = "".join(random.sample([ chr(c) for c in range(256) ], 64))
          return Image.fromstring("L", (8,8), b)
        def sprite(dst, x, y, src):
          try:
            dst.paste(src, (int(x)-4,int(y)-4))
          except:
            print "paste failed", x, y
        random.seed(0)
        palette = [ rndimg() for i in model ]
        expected = []
        afs = []
        for i in range(100):
          P = movement(i)
          li = Image.new("L", (640, 480))
          ri = Image.new("L", (640, 480))
          q = 0
          for (mx,my,mz) in model:
            pp = None
            pt_camera = (numpy.dot(P.M.I, numpy.array([mx,my,mz,1]).T))
            (cx,cy,cz,cw) = numpy.array(pt_camera).ravel()
            if cz > 100:
              ((xl,yl),(xr,yr)) = cam.cam2pixLR(cx, cy, cz)
              if 0 <= xl and xl < 640 and 0 <= yl and yl < 480:
                sprite(li, xl, yl, palette[q])
                sprite(ri, xr, yr, palette[q])
            q += 1
          #li.save("sim/left-%04d.png" % i)
          #ri.save("sim/right-%04d.png" % i)
          expected.append(P)
          afs.append(SparseStereoFrame(li, ri))

      threshes = [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06]
      threshes = [ 0.001 * i for i in range(100) ]
      threshes = range(100, 500, 10)
      error = []
      for thresh in threshes:
        vo = VisualOdometer(cam, inlier_thresh = thresh)
        for (e,af) in zip(expected, afs)[::1]:
          vo.handle_frame(af)
Example #35
0
class VODemo:
  vo = None
  frame = 0

  def __init__(self, mode, library):
    self.mode = mode
    self.library = library

    rospy.TopicSub('/videre/images', ImageArray, self.display_array)
    rospy.TopicSub('/videre/cal_params', String, self.display_params)
    rospy.TopicSub('/vo/tmo', Pose44, self.handle_corrections)

    self.viz_pub = rospy.Publisher("/overlay", Lines)
    self.vo_key_pub = rospy.Publisher("/vo/key", Frame)
    self.Tmo = Pose()

    self.mymarker1 = Marker(10)
    self.mymarkertrail = [ Marker(11 + i) for i in range(10) ]
    self.trail = []

    self.vis = Vis()

  def display_params(self, iar):
    if not self.vo:
      cam = camera.VidereCamera(iar.data)
      print "cam.params", cam.params
      self.vo = VisualOdometer(cam)
      self.started = None
      if self.mode == 'learn':
        self.library = set()
      self.previous_keyframe = None
      self.know_state = 'lost'
      self.best_show_pose = None
      self.mymarker1.floor()

  def handle_corrections(self, corrmsg):
    print "GOT CORRECTION AT", time.time()
    Tmo_pose = Pose()
    Tmo_pose.fromlist(corrmsg.v)
    self.Tmo = Tmo_pose
    self.know_state = 'corrected'

  def display_array(self, iar):
    diag = ""
    af = None
    if self.vo:
      if not self.started:
        self.started = time.time()
      imgR = imgAdapted(iar.images[0])
      imgL = imgAdapted(iar.images[1])
      af = SparseStereoFrame(imgL, imgR)

      if 1:
        if self.mode == 'play':
          pose = self.vo.handle_frame(af)
        if self.mode == 'learn':
          pose = self.vo.handle_frame(af)
          if (af.id != 0) and (self.vo.inl < 80):
            print "*** LOST TRACK ***"
            #sys.exit(1)
          self.library.add(self.vo.keyframe)
        else:
          #diag = "best match %d from %d in library" % (max(probes)[0], len(self.library))
          pass
        diag = "%d/%d inliers, moved %.1f library size %d" % (self.vo.inl, len(af.kp), pose.distance(), len(self.library))

        if self.mode == 'play':
          kf = self.vo.keyframe
          if kf != self.previous_keyframe:
            f = Frame()
            f.id = kf.id
            f.pose = Pose44(kf.pose.tolist())
            f.keypoints = [ Keypoint(x,y,d) for (x,y,d) in kf.kp ]
            f.descriptors = [ Descriptor(d) for d in kf.descriptors ]
            print "ASKING FOR MATCH AT", time.time()
            self.vo_key_pub.publish(f)
            self.previous_keyframe = kf
            if kf.inl < 50 or self.vo.inl < 50:
              self.know_state = 'lost'
            else:
              self.know_state = { 'lost':'lost', 'uncertain':'uncertain', 'corrected':'uncertain' }[self.know_state]

        result_pose = af.pose
        if self.mode == 'learn':
          self.mymarker1.frompose(af.pose, self.vo.cam, (255,255,255))
        else:
          if self.best_show_pose and self.know_state == 'lost':
            inmap = self.best_show_pose
          else:
            Top = af.pose
            Tmo = self.Tmo
            inmap = Tmo * Top
            if self.know_state != 'lost':
              self.best_show_pose = inmap
          if self.know_state != 'lost' or not self.best_show_pose:
            color = { 'lost' : (255,0,0), 'uncertain' : (127,127,0), 'corrected' : (0,255,0) }[self.know_state]
            self.mymarker1.frompose(inmap, self.vo.cam, color)
            if 0:
              self.trail.append(inmap)
              self.trail = self.trail[-10:]
              for i,p in enumerate(self.trail):
                self.mymarkertrail[i].frompose(p, color)
        #print af.diff_pose.xform(0,0,0), af.pose.xform(0,0,0)

        if self.frame > 5 and ((self.frame % 10) == 0):
          inliers = self.vo.pe.inliers()
          pts = [(1,int(x0),int(y0)) for ((x0,y0,d0), (x1,y1,d1)) in inliers]
          self.vis.show(iar.images[1].data, pts )

        if False and self.vo.pairs != []:
          ls = Lines()
          inliers = self.vo.pe.inliers()
          lr = "left_rectified"
          ls.lines = [ Line(lr, 0,255,0,x0,y0-2,x0,y0+2) for ((x0,y0,d0), (x1,y1,d1)) in inliers]
          ls.lines += [ Line(lr, 0,255,0,x0-2,y0,x0+2,y0) for ((x0,y0,d0), (x1,y1,d1)) in inliers]
          rr = "right_rectified"
          #ls.lines += [ Line(rr, 0,255,0,x0-d0,y0-2,x0-d0,y0+2) for ((x0,y0,d0), (x1,y1,d1)) in inliers]
          #ls.lines += [ Line(rr, 0,255,0,x0-2-d0,y0,x0+2-d0,y0) for ((x0,y0,d0), (x1,y1,d1)) in inliers]
          self.viz_pub.publish(ls)

        if (self.frame % 30) == 0:
          took = time.time() - self.started
          print "%4d: %5.1f [%f fps]" % (self.frame, took, self.frame / took), diag
        self.frame += 1

    #print "got message", len(iar.images)
    #print iar.images[0].width
    if SEE:
      right = ut.ros2cv(iar.images[0])
      left  = ut.ros2cv(iar.images[1])
      hg.cvShowImage('channel L', left)
      hg.cvShowImage('channel R', right)
      hg.cvWaitKey(5)

  def dump(self):
    print
    print self.vo.name()
    self.vo.summarize_timers()
    if self.mode == 'learn':
      print "DUMPING LIBRARY", len(self.library)
      f = open("library.pickle", "w")
      pickle.dump(self.vo.cam, f)
      db = [(af.id, af.pose, af.kp, af.descriptors) for af in self.library]
      pickle.dump(db, f)
      f.close()
      print "DONE"
Example #36
0
cam = pickle.load(f)
db = pickle.load(f)
f.close()

class LibraryFrame:
  def __init__(self, pose, kp, desc):
    self.pose = pose
    self.kp = kp
    self.descriptors = desc

afs = {}
for (id, pose, kp, desc) in db:
  lf = LibraryFrame(pose, kp, desc)
  afs[id] = lf

vo = VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD())

print "%d frames in library" % len(afs)
most_overlap = 99999
while most_overlap > 180:
  ov = []
  for i in afs.keys():
    for j in [k for k in afs.keys() if k > i]:
      (overlap, _) = vo.proximity(afs[i], afs[j])
      ov.append((overlap, i))
  print max(ov)
  most_overlap = max(ov)[0]
  del afs[max(ov)[1]]
print "%d frames in library" % len(afs)

f = open("pruned.pickle", "w")
Example #37
0

class PhonyFrame:
    def __init__(self, pose, cam):
        p3d = [pose.xform(*p) for p in points]
        self.kp = [cam.cam2pix(*p) for p in p3d]

        def r():
            return -0.5 + random.random() * 1

        self.kp = [(x + r(), y + r(), d) for (x, y, d) in self.kp]


vos = [
    VisualOdometer(stereo_cam,
                   scavenge=False,
                   sba=(1, 1, 10),
                   inlier_error_threshold=3.0),
    VisualOdometer(stereo_cam,
                   scavenge=False,
                   sba=(1, 1, 10),
                   inlier_error_threshold=3.0),

    #VisualOdometer(stereo_cam, sba=(1,1,1)),
    #VisualOdometer(stereo_cam, scavenge = True, sba=None, inlier_error_threshold = 3.0),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 1.5),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 2.0),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 2.5),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 3.0),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 3.5),
    #VisualOdometer(stereo_cam, feature_detector = FeatureDetector4x4(FeatureDetectorHarris), scavenge = True, sba = None),
Example #38
0

class PhonyFrame:
    def __init__(self, pose, cam):
        p3d = [pose.xform(*p) for p in points]
        self.kp = [cam.cam2pix(*p) for p in p3d]

        def r():
            return -0.5 + random.random() * 1

        self.kp = [(x + r(), y + r(), d) for (x, y, d) in self.kp]


vos = [
    #VisualOdometer(stereo_cam, sba=(1,1,1)),
    VisualOdometer(stereo_cam, sba=None, inlier_error_threshold=1.0),
    VisualOdometer(stereo_cam,
                   feature_detector=FeatureDetectorHarris(),
                   sba=(3, 10, 10),
                   inlier_error_threshold=1.0),

    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 1.5),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 2.0),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 2.5),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 3.0),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 3.5),
    #VisualOdometer(stereo_cam, feature_detector = FeatureDetector4x4(FeatureDetectorHarris), scavenge = True, sba = None),

    #PhonyVisualOdometer(stereo_cam),
    #PhonyVisualOdometer(stereo_cam, sba = (5,5,5))
    #VisualOdometer(stereo_cam, feature_detector = FeatureDetector4x4(FeatureDetectorFast)),
Example #39
0
 def handle_params(self, iar):
   if not self.vo:
     cam = camera.VidereCamera(iar.data)
     self.vo = VisualOdometer(cam)
     self.intervals = []
     self.took = []
Example #40
0
from visualodometer import VisualOdometer, Pose, DescriptorSchemeCalonder, DescriptorSchemeSAD, FeatureDetectorFast, FeatureDetector4x4, FeatureDetectorStar, FeatureDetectorHarris, from_xyz_euler
from stereo import SparseStereoFrame
from timer import Timer

import pylab, numpy
import cPickle as pickle

import math
import random
import time
random.seed(0)

cam = camera.Camera((432.0, 432.0, 0.088981018518518529, 313.78210000000001,
                     313.78210000000001, 220.40700000000001))
vo = VisualOdometer(cam,
                    scavenge=True,
                    feature_detector=FeatureDetectorFast(),
                    descriptor_scheme=DescriptorSchemeCalonder())

vt = place_recognition.load("/u/mihelich/images/holidays/holidays.tree")

f = []
for i in range(180):  # range(1,146):
    print i
    L = Image.open("pool_loop/%06dL.png" % i)
    R = Image.open("pool_loop/%06dR.png" % i)
    nf = SparseStereoFrame(L, R)
    vo.setup_frame(nf)
    nf.id = len(f)
    if vt:
        vt.add(nf.lf, nf.descriptors)
    f.append(nf)
Example #41
0
class PicmapNode:
    def __init__(self, args):
        rospy.init_node('picmap_server')
        stereo_cam = camera.Camera(
            (389.0, 389.0, 89.23 * 1e-3, 323.42, 323.42, 274.95))

        self.vo = None
        self.transformer = pytf_swig.pyTransformer()
        self.transformer.setExtrapolationLimit(0.0)

        self.fd = FeatureDetectorFast(300)
        self.ds = DescriptorSchemeCalonder()
        self.pm = PictureMap(self.ds)

        #self.pub = rospy.Publisher("/picmap_pose", vslam.msg.Picmap)

        rospy.Subscriber('/stereo/raw_stereo',
                         stereo_msgs.msg.RawStereo,
                         self.handle_raw_stereo_queue,
                         queue_size=2,
                         buff_size=7000000)
        rospy.Subscriber('/amcl_pose',
                         geometry_msgs.msg.PoseWithCovarianceStamped,
                         self.handle_amcl_pose)
        rospy.Subscriber('/tf_message', tf.msg.tfMessage, self.handle_tf_queue)

        self.pmlock = threading.Lock()
        self.q = Queue.Queue(0)  # 0 means maxsize is infinite
        self.tfq = Queue.Queue(0)
        t = threading.Thread(target=self.worker)
        t.start()

    def start(self):
        rospy.spin()
        pickle.dump(self.pm, open("/tmp/final_pm.pickle", "w"))

    def handle_tf_queue(self, msg):
        print "  queued transform", min(
            [t.header.stamp.to_seconds() for t in msg.transforms])
        self.tfq.put(msg)

    def handle_tf(self, msg):
        #print "incoming transform", min([ t.header.stamp.to_seconds() for t in msg.transforms ])
        for transform in msg.transforms:
            ptf = py_transform_from_transform_stamped(transform)
            self.transformer.setTransform(ptf)
        #print self.transformer.allFramesAsString()
        #print "TF", "map->stereo_link getLatestCommonTime", self.transformer.getLatestCommonTime('map', 'stereo_link')

    def handle_raw_stereo_queue(self, msg):
        print "  queued picture  ", msg.header.stamp.to_seconds()
        self.q.put(msg)

    def worker(self):
        while True:
            # There are N messages in the queue.
            # Want to discard all but the most recent.
            while self.q.qsize() > 1:
                self.q.get()
            item = self.q.get()
            self.handle_raw_stereo(item)

    def handle_raw_stereo(self, msg):
        print "incoming picture  ", msg.header.stamp.to_seconds()

        size = (msg.left_info.width, msg.left_info.height)
        cam = camera.StereoCamera(msg.right_info)
        if self.vo == None:
            self.vo = VisualOdometer(cam,
                                     scavenge=False,
                                     inlier_error_threshold=3.0,
                                     sba=None,
                                     inlier_thresh=100,
                                     position_keypoint_thresh=0.2,
                                     angle_keypoint_thresh=0.15)
            self.keys = set()
            self.v = Vis('raw stereo')

        #pair = [Image.fromstring("L", size, i.uint8_data.data) for i in [ msg.left_image, msg.right_image ]]
        pair = [dcamImage(i) for i in [msg.left_image, msg.right_image]]
        af = SparseStereoFrame(pair[0],
                               pair[1],
                               feature_detector=self.fd,
                               descriptor_scheme=self.ds)
        af.t = msg.header.stamp.to_seconds()

        self.vo.handle_frame(af)

        self.v.show(msg.left_image.uint8_data.data, [])
        k = self.vo.keyframe
        if (not (k.id in self.keys)):
            self.keys.add(k.id)
            picture = Picture(k.features(), k.descriptors())
            self.pm.newpic(k.t, cam, picture, True)

        if 0:
            picture = Picture(af.features(), af.descriptors())
            self.pm.newpic(af.t, cam, picture, False)

        while True:
            if self.tfq.qsize() == 0:
                break
            tfmsg = self.tfq.get()
            if min([t.header.stamp.to_seconds() for t in tfmsg.transforms
                    ]) > (msg.header.stamp.to_seconds() + 1.0):
                break
            self.handle_tf(tfmsg)

        self.pmlock.acquire()
        self.pm.resolve(self.transformer)
        self.pmlock.release()

    def handle_amcl_pose(self, msg):
        if self.vo:
            print "handle_amcl_pose(", msg, ")"
            happy = max([msg.pose.covariance[0], msg.pose.covariance[7]
                         ]) < 0.003
            print "picmap node got amcl", msg.header.stamp.to_seconds(
            ), msg.pose.covariance[0], msg.pose.covariance[7], "happy", happy
            self.pmlock.acquire()
            self.pm.newLocalization(msg.header.stamp.to_seconds(), happy)
            self.pmlock.release()
Example #42
0
class VODemo:
    vo = None
    frame = 0

    def __init__(self, mode, library):
        self.mode = mode
        self.library = library

        rospy.TopicSub('/videre/images', ImageArray, self.display_array)
        rospy.TopicSub('/videre/cal_params', String, self.display_params)
        rospy.TopicSub('/vo/tmo', Pose44, self.handle_corrections)

        self.viz_pub = rospy.Publisher("/overlay", Lines)
        self.vo_key_pub = rospy.Publisher("/vo/key", Frame)
        self.Tmo = Pose()

        self.mymarker1 = Marker(10)
        self.mymarkertrail = [Marker(11 + i) for i in range(10)]
        self.trail = []

        self.vis = Vis()

    def display_params(self, iar):
        if not self.vo:
            cam = camera.VidereCamera(iar.data)
            print "cam.params", cam.params
            self.vo = VisualOdometer(cam)
            self.started = None
            if self.mode == 'learn':
                self.library = set()
            self.previous_keyframe = None
            self.know_state = 'lost'
            self.best_show_pose = None
            self.mymarker1.floor()

    def handle_corrections(self, corrmsg):
        print "GOT CORRECTION AT", time.time()
        Tmo_pose = Pose()
        Tmo_pose.fromlist(corrmsg.v)
        self.Tmo = Tmo_pose
        self.know_state = 'corrected'

    def display_array(self, iar):
        diag = ""
        af = None
        if self.vo:
            if not self.started:
                self.started = time.time()
            imgR = imgAdapted(iar.images[0])
            imgL = imgAdapted(iar.images[1])
            af = SparseStereoFrame(imgL, imgR)

            if 1:
                if self.mode == 'play':
                    pose = self.vo.handle_frame(af)
                if self.mode == 'learn':
                    pose = self.vo.handle_frame(af)
                    if (af.id != 0) and (self.vo.inl < 80):
                        print "*** LOST TRACK ***"
                        #sys.exit(1)
                    self.library.add(self.vo.keyframe)
                else:
                    #diag = "best match %d from %d in library" % (max(probes)[0], len(self.library))
                    pass
                diag = "%d/%d inliers, moved %.1f library size %d" % (
                    self.vo.inl, len(af.kp), pose.distance(), len(
                        self.library))

                if self.mode == 'play':
                    kf = self.vo.keyframe
                    if kf != self.previous_keyframe:
                        f = Frame()
                        f.id = kf.id
                        f.pose = Pose44(kf.pose.tolist())
                        f.keypoints = [
                            Keypoint(x, y, d) for (x, y, d) in kf.kp
                        ]
                        f.descriptors = [Descriptor(d) for d in kf.descriptors]
                        print "ASKING FOR MATCH AT", time.time()
                        self.vo_key_pub.publish(f)
                        self.previous_keyframe = kf
                        if kf.inl < 50 or self.vo.inl < 50:
                            self.know_state = 'lost'
                        else:
                            self.know_state = {
                                'lost': 'lost',
                                'uncertain': 'uncertain',
                                'corrected': 'uncertain'
                            }[self.know_state]

                result_pose = af.pose
                if self.mode == 'learn':
                    self.mymarker1.frompose(af.pose, self.vo.cam,
                                            (255, 255, 255))
                else:
                    if self.best_show_pose and self.know_state == 'lost':
                        inmap = self.best_show_pose
                    else:
                        Top = af.pose
                        Tmo = self.Tmo
                        inmap = Tmo * Top
                        if self.know_state != 'lost':
                            self.best_show_pose = inmap
                    if self.know_state != 'lost' or not self.best_show_pose:
                        color = {
                            'lost': (255, 0, 0),
                            'uncertain': (127, 127, 0),
                            'corrected': (0, 255, 0)
                        }[self.know_state]
                        self.mymarker1.frompose(inmap, self.vo.cam, color)
                        if 0:
                            self.trail.append(inmap)
                            self.trail = self.trail[-10:]
                            for i, p in enumerate(self.trail):
                                self.mymarkertrail[i].frompose(p, color)
                #print af.diff_pose.xform(0,0,0), af.pose.xform(0,0,0)

                if self.frame > 5 and ((self.frame % 10) == 0):
                    inliers = self.vo.pe.inliers()
                    pts = [(1, int(x0), int(y0))
                           for ((x0, y0, d0), (x1, y1, d1)) in inliers]
                    self.vis.show(iar.images[1].data, pts)

                if False and self.vo.pairs != []:
                    ls = Lines()
                    inliers = self.vo.pe.inliers()
                    lr = "left_rectified"
                    ls.lines = [
                        Line(lr, 0, 255, 0, x0, y0 - 2, x0, y0 + 2)
                        for ((x0, y0, d0), (x1, y1, d1)) in inliers
                    ]
                    ls.lines += [
                        Line(lr, 0, 255, 0, x0 - 2, y0, x0 + 2, y0)
                        for ((x0, y0, d0), (x1, y1, d1)) in inliers
                    ]
                    rr = "right_rectified"
                    #ls.lines += [ Line(rr, 0,255,0,x0-d0,y0-2,x0-d0,y0+2) for ((x0,y0,d0), (x1,y1,d1)) in inliers]
                    #ls.lines += [ Line(rr, 0,255,0,x0-2-d0,y0,x0+2-d0,y0) for ((x0,y0,d0), (x1,y1,d1)) in inliers]
                    self.viz_pub.publish(ls)

                if (self.frame % 30) == 0:
                    took = time.time() - self.started
                    print "%4d: %5.1f [%f fps]" % (self.frame, took,
                                                   self.frame / took), diag
                self.frame += 1

        #print "got message", len(iar.images)
        #print iar.images[0].width
        if SEE:
            right = ut.ros2cv(iar.images[0])
            left = ut.ros2cv(iar.images[1])
            hg.cvShowImage('channel L', left)
            hg.cvShowImage('channel R', right)
            hg.cvWaitKey(5)

    def dump(self):
        print
        print self.vo.name()
        self.vo.summarize_timers()
        if self.mode == 'learn':
            print "DUMPING LIBRARY", len(self.library)
            f = open("library.pickle", "w")
            pickle.dump(self.vo.cam, f)
            db = [(af.id, af.pose, af.kp, af.descriptors)
                  for af in self.library]
            pickle.dump(db, f)
            f.close()
            print "DONE"
Example #43
0

class PhonyFrame:
    def __init__(self, pose, cam):
        p3d = [pose.xform(*p) for p in points]
        self.kp = [cam.cam2pix(*p) for p in p3d]

        def r():
            return -0.5 + random.random() * 1

        self.kp = [(x + r(), y + r(), d) for (x, y, d) in self.kp]


vos = [
    #VisualOdometer(stereo_cam, sba=(1,1,1)),
    VisualOdometer(stereo_cam, sba=None, inlier_error_threshold=3.0),
    #  VisualOdometer(stereo_cam, sba=(3,10,10), inlier_error_threshold = 1.0),
    VisualOdometer(stereo_cam, sba=(3, 10, 10), inlier_error_threshold=3.0),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 1.5),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 2.0),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 2.5),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 3.0),
    #VisualOdometer(stereo_cam, sba=(5,5,10), inlier_error_threshold = 3.5),
    #VisualOdometer(stereo_cam, feature_detector = FeatureDetector4x4(FeatureDetectorHarris), scavenge = True, sba = None),

    #PhonyVisualOdometer(stereo_cam),
    #PhonyVisualOdometer(stereo_cam, sba = (5,5,5))
    #VisualOdometer(stereo_cam, feature_detector = FeatureDetector4x4(FeatureDetectorFast)),
    #VisualOdometer(stereo_cam, scavenge = True, sba = (1,1,5)),
]
    min_distance = 10.0
    return VO.harris(frame.rawdata, frame.size[0], frame.size[1], 1000, quality_level, min_distance)

for topic, msg, t in rosrecord.logplayer(filename):
  if rospy.is_shutdown():
    break

  if topic.endswith("videre/cal_params") and not cam:
    print msg.data
    cam = camera.VidereCamera(msg.data)
    (Fx, Fy, Tx, Clx, Crx, Cy) = cam.params
    Tx /= (7.30 / 7.12)
    cam = camera.Camera((Fx, Fy, Tx, Clx, Crx, Cy))

    vos = [
      VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD(), sba = None),
      VisualOdometer(cam, feature_detector = FeatureDetectorMine(), inlier_error_threshold = 1.0, descriptor_scheme = DescriptorSchemeSAD(), sba = (3,10,10)),
      #VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD(), sba = (3,8,10)),

      #VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD()),
      #VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD(), scavenge = True),
      #VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD(), scavenge = True, inlier_thresh = 100),

      #VisualOdometer(cam, feature_detector = FeatureDetectorHarris(), descriptor_scheme = DescriptorSchemeSAD()),
      #VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD()),
      #VisualOdometer(cam, feature_detector = FeatureDetector4x4(FeatureDetectorFast), descriptor_scheme = DescriptorSchemeSAD()),
    ]
    vo_x = [ [] for i in vos]
    vo_y = [ [] for i in vos]
    vo_u = [ [] for i in vos]
    vo_v = [ [] for i in vos]
Example #45
0
  def test_sim(self):
    # Test process with one 'ideal' camera, one real-world Videre
    camera_param_list = [
      # (200.0, 200.0, 3.00,  320.0, 320.0, 240.0),
      (389.0, 389.0, 1e-3 * 89.23, 323.42, 323.42, 274.95)
    ]
    def move_forward(i, prev):
      """ Forward 1 meter, turn around, Back 1 meter """
      if i == 0:
        return Pose(rotation(0,0,1,0), (0,0,0))
      elif i < 10:
        return prev * Pose(rotation(0,0,1,0), (0,0,.1))
      elif i < 40:
        return prev * Pose(rotation(math.pi / 30, 0, 1, 0), (0, 0, 0))
      elif i < 50:
        return prev * Pose(rotation(0,0,1,0), (0,0,.1))

    for movement in [ move_forward ]: # move_combo, move_Yrot ]:
      for cam_params in camera_param_list:
        cam = camera.Camera(cam_params)

        random.seed(0)
        def rr():
          return 2 * random.random() - 1.0
        model = [ (3 * rr(), 1 * rr(), 3 * rr()) for i in range(300) ]
        def rndimg():
          b = "".join(random.sample([ chr(c) for c in range(256) ], 64))
          return Image.fromstring("L", (8,8), b)
        def sprite(dst, x, y, src):
          try:
            dst.paste(src, (int(x)-4,int(y)-4))
          except:
            print "paste failed", x, y
        palette = [ rndimg() for i in model ]
        expected = []
        afs = []
        P = None
        for i in range(50):
          P = movement(i, P)
          li = Image.new("L", (640, 480))
          ri = Image.new("L", (640, 480))
          q = 0
          for (mx,my,mz) in model:
            pp = None
            pt_camera = (numpy.dot(P.M.I, numpy.array([mx,my,mz,1]).T))
            (cx,cy,cz,cw) = numpy.array(pt_camera).ravel()
            if cz > .100:
              ((xl,yl),(xr,yr)) = cam.cam2pixLR(cx, cy, cz)
              if 0 <= xl and xl < 640 and 0 <= yl and yl < 480:
                sprite(li, xl, yl, palette[q])
                sprite(ri, xr, yr, palette[q])
            q += 1
          expected.append(P)
          afs.append(SparseStereoFrame(imgStereo(li), imgStereo(ri)))

      vo = VisualOdometer(cam)
      for i,(af,ep) in enumerate(zip(afs, expected)):
        vo.handle_frame(af)
        if 0:
          print vo.pose.xform(0,0,0)
          print "expected", ep.M
          print "vo.pose", vo.pose.M
          print numpy.abs((ep.M - vo.pose.M))
        self.assert_(numpy.alltrue(numpy.abs((ep.M - vo.pose.M)) < 0.2))

      def run(vos):
        for af in afs:
          for vo in vos:
            vo.handle_frame(af)

      # Check that the pose estimators are truly independent

      v1 = VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD(), inlier_error_threshold=1.0)
      v2 = VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD(), inlier_error_threshold=2.0)
      v8 = VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD(), inlier_error_threshold=8.0)
      v1a = VisualOdometer(cam, feature_detector = FeatureDetectorFast(), descriptor_scheme = DescriptorSchemeSAD(), inlier_error_threshold=1.0)
      run([v1])
      run([v2,v8,v1a])
      self.assert_(v1.pose.xform(0,0,0) == v1a.pose.xform(0,0,0))
      for a,b in [ (v1,v2), (v2,v8), (v1, v8) ]:
        self.assert_(a.pose.xform(0,0,0) != b.pose.xform(0,0,0))

      return