Example #1
0
def main():

    # Plot configs
    if VERBOSE:
        plt.ion()
        fig = plt.figure(figsize=(10, 10))
        ax_spatial = fig.add_subplot(1, 1, 1)
        circs = []
        sctZ = None

    # Inference
    init = tf.global_variables_initializer()
    sess.run(init)
    lbs = []
    n_iters = 0
    for _ in range(args.maxIter):

        # ELBO computation
        _, mer, lb, m_out, beta_out, pi_out, phi_out = sess.run(
            [train, merged, LB, lambda_m, lambda_beta, lambda_pi, lambda_phi])
        lbs.append(lb[0][0])

        if VERBOSE:
            print('\n******* ITERATION {} *******'.format(n_iters))
            print('lambda_pi: {}'.format(pi_out))
            print('lambda_beta: {}'.format(beta_out))
            print('lambda_m: {}'.format(m_out))
            print('lambda_phi: {}'.format(phi_out[0:9, :]))
            print('ELBO: {}'.format(lb))
            ax_spatial, circs, sctZ = plot_iteration(ax_spatial, circs, sctZ,
                                                     sess.run(lambda_m),
                                                     sess.run(delta_o),
                                                     xn, n_iters, K)

        # Break condition
        improve = lb - lbs[n_iters - 1]
        if VERBOSE: print('Improve: {}'.format(improve))
        if (n_iters == (args.maxIter - 1)) \
                or (n_iters > 0 and 0 < improve < THRESHOLD):
            if VERBOSE and D == 2: plt.savefig('generated/plot.png')
            break

        n_iters += 1
        file_writer.add_summary(mer, n_iters)

    if VERBOSE:
        print('\n******* RESULTS *******')
        for k in range(K):
            print('Mu k{}: {}'.format(k, m_out[k, :]))
        final_time = time()
        exec_time = final_time - init_time
        print('Time: {} seconds'.format(exec_time))
        print('Iterations: {}'.format(n_iters))
        print('ELBOs: {}'.format(lbs))
Example #2
0
def main():

    # Plot configs
    if VERBOSE:
        plt.ion()
        plt.style.use('seaborn-darkgrid')
        fig = plt.figure(figsize=(10, 10))
        ax_spatial = fig.add_subplot(1, 1, 1)
        circs = []
        sctZ = None

    # Inference
    init = tf.global_variables_initializer()
    sess.run(init)
    lbs = []
    n_iters = 0

    phi_out = sess.run(lambda_phi)
    pi_out = sess.run(lambda_pi)
    m_out = sess.run(lambda_m)
    nu_out = sess.run(lambda_nu)
    w_out = sess.run(lambda_w)
    beta_out = sess.run(lambda_beta)

    for _ in range(args.maxIter):

        # Update local variational parameter lambda_phi
        new_lambda_phi = update_lambda_phi(phi_out, pi_out, m_out, nu_out,
                                           w_out, beta_out, xn, N, K, D)
        sess.run(lambda_phi.assign(new_lambda_phi))

        # ELBO computation
        _, mer, lb, pi_out, phi_out, m_out, beta_out, nu_out, w_out = sess.run(
            [
                train, merged, LB, lambda_pi, lambda_phi, lambda_m,
                lambda_beta, lambda_nu, lambda_w
            ])
        lbs.append(lb)

        if VERBOSE:
            print('\n******* ITERATION {} *******'.format(n_iters))
            print('lambda_pi: {}'.format(pi_out))
            print('lambda_phi: {}'.format(phi_out[0:9, :]))
            print('lambda_m: {}'.format(m_out))
            print('lambda_beta: {}'.format(beta_out))
            print('lambda_nu: {}'.format(nu_out))
            print('lambda_w: {}'.format(w_out))
            print('ELBO: {}'.format(lb))
            covs = []
            for k in range(K):
                w_out[k, 0, 0] = 1.0 / w_out[k, 0, 0]
                w_out[k, 1, 1] = 1.0 / w_out[k, 1, 1]
                covs.append(w_out[k, :, :] / (nu_out[k] - D - 1))
            ax_spatial, circs, sctZ = plot_iteration(ax_spatial, circs, sctZ,
                                                     m_out, covs, xn, n_iters,
                                                     K)

            # Break condition
            improve = lb - lbs[n_iters - 1] if n_iters > 0 else lb
            if VERBOSE: print('Improve: {}'.format(improve))
            if n_iters > 0 and 0 <= improve < THRESHOLD: break

        n_iters += 1
        file_writer.add_summary(mer, n_iters)

    zn = np.array([np.argmax(phi_out[n, :]) for n in xrange(N)])

    if VERBOSE:
        print('\n******* RESULTS *******')
        for k in range(K):
            print('Mu k{}: {}'.format(k, m_out[k, :]))
        final_time = time()
        exec_time = final_time - init_time
        print('Time: {} seconds'.format(exec_time))
        print('Iterations: {}'.format(n_iters))
        print('ELBOs: {}'.format(lbs[len(lbs) - 10:len(lbs)]))
        if D == 2: plt.savefig('generated/gavi_plot.png')
        if D == 3:
            fig = plt.figure()
            ax = fig.add_subplot(111, projection='3d')
            ax.scatter(xn[:, 0],
                       xn[:, 1],
                       xn[:, 2],
                       c=zn,
                       cmap=cm.gist_rainbow,
                       s=5)
            ax.set_xlabel('X')
            ax.set_ylabel('Y')
            ax.set_zlabel('Z')
            plt.show()
        plt.gcf().clear()
        plt.plot(np.arange(len(lbs)), lbs)
        plt.ylabel('ELBO')
        plt.xlabel('Iterations')
        plt.savefig('generated/gavi_elbos.png')

    if args.exportAssignments:
        with open('generated/gavi_assignments.csv', 'wb') as output:
            writer = csv.writer(output,
                                delimiter=';',
                                quotechar='',
                                escapechar='\\',
                                quoting=csv.QUOTE_NONE)
            writer.writerow(['zn'])
            for i in range(len(zn)):
                writer.writerow([zn[i]])

    if args.exportVariationalParameters:
        with open('generated/gavi_variational_parameters.pkl', 'w') as output:
            pkl.dump(
                {
                    'lambda_pi': pi_out,
                    'lambda_m': m_out,
                    'lambda_beta': beta_out,
                    'lambda_nu': nu_out,
                    'lambda_w': w_out,
                    'K': K,
                    'D': D
                }, output)

    if args.exportELBOs:
        with open('generated/gavi_elbos.pkl', 'w') as output:
            pkl.dump({'elbos': lbs, 'iter_time': exec_time / n_iters}, output)
Example #3
0
def main():
    try:
        if not ('.pkl' in args.dataset): raise Exception('input_format')

        # Get data
        with open('{}'.format(args.dataset), 'r') as inputfile:
            data = pkl.load(inputfile)
            xn = data['xn']
        N, D = xn.shape

        if VERBOSE: init_time = time()

        # Priors
        alpha_o = np.array([1.0] * K)
        nu_o = np.array([float(D)])
        if nu_o[0] < D: raise Exception('degrees_of_freedom')
        w_o = generate_random_positive_matrix(D)
        m_o = np.array([0.0] * D)
        beta_o = np.array([0.7])

        # Variational parameters intialization
        lambda_phi = np.random.dirichlet(alpha_o, N) \
            if args.randomInit else init_kmeans(xn, N, K)
        lambda_pi = np.zeros(shape=K)
        lambda_beta = np.zeros(shape=K)
        lambda_nu = np.zeros(shape=K)
        lambda_m = np.random.rand(K, D)
        lambda_w = np.array([np.copy(w_o) for _ in range(K)])

        # Plot configs
        if VERBOSE and D == 2:
            plt.ion()
            plt.style.use('seaborn-darkgrid')
            fig = plt.figure(figsize=(10, 10))
            ax_spatial = fig.add_subplot(1, 1, 1)
            circs = []
            sctZ = None

        # Inference
        lbs = []
        aux_lbs = []
        n_iters = 0
        for i in range(args.maxIter * (N / BATCH_SIZE)):

            # Sample xn
            idx = np.random.randint(N, size=BATCH_SIZE)
            x_batch = xn[idx, :]

            # Variational parameter updates
            lambda_pi = update_lambda_pi(lambda_pi, lambda_phi[idx, :],
                                         alpha_o)
            Nks = np.sum(lambda_phi[idx, :], axis=0)
            lambda_beta = update_lambda_beta(lambda_beta, beta_o, Nks)
            lambda_nu = update_lambda_nu(lambda_nu, nu_o, Nks)
            lambda_m = update_lambda_m(lambda_m, lambda_phi[idx, :],
                                       lambda_beta, m_o, beta_o, x_batch,
                                       BATCH_SIZE, D)
            lambda_w = update_lambda_w(lambda_w, lambda_phi[idx, :],
                                       lambda_beta, lambda_m, w_o, beta_o, m_o,
                                       x_batch, K, BATCH_SIZE, D)
            lambda_phi = update_lambda_phi(lambda_phi, lambda_pi, lambda_m,
                                           lambda_nu, lambda_w, lambda_beta,
                                           xn, K, D, idx)

            # ELBO computation and variational parameter updates
            lb = elbo2(x_batch, alpha_o, lambda_pi, lambda_phi[idx, :], m_o,
                       lambda_m, beta_o, lambda_beta, nu_o, lambda_nu, w_o,
                       inv(lambda_w), BATCH_SIZE, K)
            lb = lb * (N / BATCH_SIZE)
            aux_lbs.append(lb)
            if len(aux_lbs) == (N / BATCH_SIZE):
                lbs.append(np.mean(aux_lbs))
                n_iters += 1
                aux_lbs = []

            if VERBOSE:
                print('\n******* ITERATION {} *******'.format(n_iters))
                print('lambda_pi: {}'.format(lambda_pi))
                print('lambda_beta: {}'.format(lambda_beta))
                print('lambda_nu: {}'.format(lambda_nu))
                print('lambda_m: {}'.format(lambda_m))
                print('lambda_w: {}'.format(lambda_w))
                print('lambda_phi: {}'.format(lambda_phi[0:9, :]))
                print('ELBO: {}'.format(lb))
                if D == 2:
                    covs = [
                        lambda_w[k, :, :] / (lambda_nu[k] - D - 1)
                        for k in range(K)
                    ]
                    ax_spatial, circs, sctZ = plot_iteration(
                        ax_spatial, circs, sctZ, lambda_m, covs, xn, i, K)

            # Break condition
            improve = lb - lbs[n_iters - 1] if n_iters > 0 else lb
            if VERBOSE: print('Improve: {}'.format(improve))
            if n_iters > 0 and 0 <= improve < THRESHOLD: break

        zn = np.array([np.argmax(lambda_phi[n, :]) for n in xrange(N)])

        if VERBOSE:
            print('\n******* RESULTS *******')
            for k in range(K):
                print('Mu k{}: {}'.format(k, lambda_m[k, :]))
            final_time = time()
            exec_time = final_time - init_time
            print('Time: {} seconds'.format(exec_time))
            print('Iterations: {}'.format(n_iters))
            print('ELBOs: {}'.format(lbs[len(lbs) - 10:len(lbs)]))
            if D == 2: plt.savefig('generated/scavi_plot.png')
            if D == 3:
                fig = plt.figure()
                ax = fig.add_subplot(111, projection='3d')
                ax.scatter(xn[:, 0],
                           xn[:, 1],
                           xn[:, 2],
                           c=zn,
                           cmap=cm.gist_rainbow,
                           s=5)
                ax.set_xlabel('X')
                ax.set_ylabel('Y')
                ax.set_zlabel('Z')
                plt.show()
            plt.gcf().clear()
            plt.plot(np.arange(len(lbs)), lbs)
            plt.ylabel('ELBO')
            plt.xlabel('Iterations')
            plt.savefig('generated/scavi_elbos.png')

        if args.exportAssignments:
            with open('generated/scavi_assignments.csv', 'wb') as output:
                writer = csv.writer(output,
                                    delimiter=';',
                                    quotechar='',
                                    escapechar='\\',
                                    quoting=csv.QUOTE_NONE)
                writer.writerow(['zn'])
                for i in range(len(zn)):
                    writer.writerow([zn[i]])

        if args.exportVariationalParameters:
            with open('generated/scavi_variational_parameters.pkl',
                      'w') as output:
                pkl.dump(
                    {
                        'lambda_pi': lambda_pi,
                        'lambda_m': lambda_m,
                        'lambda_beta': lambda_beta,
                        'lambda_nu': lambda_nu,
                        'lambda_w': lambda_w,
                        'K': K,
                        'D': D
                    }, output)

        if args.exportELBOs:
            with open('generated/scavi_elbos.pkl', 'w') as output:
                pkl.dump({
                    'elbos': lbs,
                    'iter_time': exec_time / n_iters
                }, output)

    except IOError:
        print('File not found!')
    except Exception as e:
        if e.args[0] == 'input_format': print('Input must be a pkl file')
        elif e.args[0] == 'degrees_of_freedom':
            print('Degrees of freedom can not be smaller than D!')
        else:
            print('Unexpected error: {}'.format(sys.exc_info()[0]))
            raise
Example #4
0
def main():

    # Get data
    with open('{}'.format(args.dataset), 'r') as inputfile:
        data = pkl.load(inputfile)
        xn = data['xn']
    N, D = xn.shape

    if VERBOSE: init_time = time()

    # Priors
    alpha_o = [1.0] * K
    m_o = np.array([0.0, 0.0])
    beta_o = 0.01
    delta_o = np.zeros((D, D), long)
    np.fill_diagonal(delta_o, 1)

    # Variational parameters intialization
    lambda_phi = np.random.dirichlet(alpha_o, N) \
        if args.randomInit else init_kmeans(xn, N, K)
    lambda_beta = beta_o + np.sum(lambda_phi, axis=0)
    lambda_m = np.tile(1. / lambda_beta, (2, 1)).T * \
               (beta_o * m_o + np.dot(lambda_phi.T, xn))

    # Plot configs
    if VERBOSE:
        plt.ion()
        fig = plt.figure(figsize=(10, 10))
        ax_spatial = fig.add_subplot(1, 1, 1)
        circs = []
        sctZ = None

    # Inference
    n_iters = 0
    lbs = []
    for _ in range(args.maxIter):

        # Variational parameter updates
        lambda_pi = update_lambda_pi(lambda_phi, alpha_o)
        lambda_phi = update_lambda_phi(lambda_pi, lambda_m, lambda_beta,
                                       lambda_phi, delta_o, xn, N, D)
        lambda_beta = update_lambda_beta(lambda_phi, beta_o)
        lambda_m = update_lambda_m(lambda_beta, lambda_phi, m_o, beta_o, xn, D)

        # ELBO computation
        lb = elbo(xn, D, K, alpha_o, m_o, beta_o, delta_o, lambda_pi, lambda_m,
                  lambda_beta, lambda_phi)
        lbs.append(lb)

        if VERBOSE:
            print('\n******* ITERATION {} *******'.format(n_iters))
            print('lambda_pi: {}'.format(lambda_pi))
            print('lambda_beta: {}'.format(lambda_beta))
            print('lambda_m: {}'.format(lambda_m))
            print('lambda_phi: {}'.format(lambda_phi[0:9, :]))
            print('ELBO: {}'.format(lb))
            ax_spatial, circs, sctZ = plot_iteration(ax_spatial, circs, sctZ,
                                                     lambda_m, delta_o, xn,
                                                     n_iters, K)

        # Break condition
        improve = lb - lbs[n_iters - 1]
        if VERBOSE: print('Improve: {}'.format(improve))
        if (n_iters == (args.maxIter - 1)) \
                or (n_iters > 0 and 0 < improve < THRESHOLD):
            if VERBOSE and D == 2: plt.savefig('generated/plot.png')
            break

        n_iters += 1

    if VERBOSE:
        print('\n******* RESULTS *******')
        for k in range(K):
            print('Mu k{}: {}'.format(k, lambda_m[k, :]))
        final_time = time()
        exec_time = final_time - init_time
        print('Time: {} seconds'.format(exec_time))
        print('Iterations: {}'.format(n_iters))
        print('ELBOs: {}'.format(lbs))
Example #5
0
    lambda_m -= ps['lambda_m'] * grads[2]
    lambda_beta -= ps['lambda_beta'] * grads[3]

    # ELBO computation
    lb = elbo((lambda_pi, lambda_phi, lambda_m, lambda_beta))
    lbs.append(lb)

    if VERBOSE:
        print('\n******* ITERATION {} *******'.format(n_iters))
        print('lambda_pi: {}'.format(lambda_pi))
        print('lambda_beta: {}'.format(lambda_beta))
        print('lambda_m: {}'.format(lambda_m))
        print('lambda_phi: {}'.format(lambda_phi[0:9, :]))
        print('ELBO: {}'.format(lb))
        ax_spatial, circs, sctZ = plot_iteration(ax_spatial, circs, sctZ,
                                                 lambda_m, delta_o, xn,
                                                 n_iters, K)

    # Break condition
    improve = lb - lbs[n_iters - 1]
    if (n_iters == (args.maxIter - 1)) \
            or (n_iters > 0 and 0 < improve < THRESHOLD):
        plt.savefig('{}.png'.format(PATH_IMAGE))
        break

    n_iters += 1

if VERBOSE:
    print('\n******* RESULTS *******')
    for k in range(K):
        print('Mu k{}: {}'.format(k, lambda_m[k, :]))
Example #6
0
    if VERBOSE:
        print('\n******* ITERATION {} *******'.format(n_iters))
        print('lambda_pi: {}'.format(lambda_pi))
        print('lambda_beta: {}'.format(lambda_beta))
        print('lambda_nu: {}'.format(lambda_nu))
        print('lambda_m: {}'.format(lambda_m))
        print('lambda_w: {}'.format(lambda_w))
        print('lambda_phi: {}'.format(lambda_phi[0:9, :]))
        print('ELBO: {}'.format(lb))
        print('\n******* ITERATION {} *******'.format(n_iters))
        if D == 2:
            covs = [
                lambda_w[k, :, :] / (lambda_nu[k] - D - 1) for k in range(K)
            ]
            ax_spatial, circs, sctZ = plot_iteration(ax_spatial, circs, sctZ,
                                                     lambda_m, covs, xn,
                                                     n_iters, K)

    # Break condition
    improve = lb - lbs[n_iters - 1]
    if VERBOSE: print('Improve: {}'.format(improve))
    if (n_iters == (args.maxIter - 1)) \
            or (n_iters > 0 and 0 < improve < THRESHOLD):
        if VERBOSE and D == 2: plt.savefig(PATH_IMAGE)
        break

    n_iters += 1

zn = agnp.array([agnp.argmax(lambda_phi[n, :]) for n in range(N)])

if VERBOSE: