Example #1
0
 def test_auc_perf_metric(self):
     np.random.seed(1)
     groundtruths = np.random.normal(0, 1.0, [4, 10]) + np.tile(np.array([1, 2, 3, 4]), [10, 1]).T
     predictions = [1, 2, 3, 4]
     metric = AucPerfMetric(groundtruths, predictions)
     result = metric.evaluate()
     self.assertAlmostEqual(result['score'], 0.9375, places=6)
     self.assertAlmostEqual(result['AUC_BW'], 0.9999999999999999, places=6)
     self.assertAlmostEqual(result['AUC_DS'], 0.9375, places=6)
     self.assertAlmostEqual(result['CC_0'], 1.0, places=6)
     self.assertAlmostEqual(result['THR'], 3.0, places=6)
Example #2
0
    def get_stats(cls, ys_label, ys_label_pred, **kwargs):

        # cannot have None
        assert all(x is not None for x in ys_label)
        assert all(x is not None for x in ys_label_pred)

        # RMSE
        rmse = RmsePerfMetric(ys_label, ys_label_pred) \
            .evaluate(enable_mapping=True)['score']

        # spearman
        srcc = SrccPerfMetric(ys_label, ys_label_pred) \
            .evaluate(enable_mapping=True)['score']

        # pearson
        pcc = PccPerfMetric(ys_label, ys_label_pred) \
            .evaluate(enable_mapping=True)['score']

        # kendall
        kendall = KendallPerfMetric(ys_label, ys_label_pred) \
            .evaluate(enable_mapping=True)['score']

        stats = {'RMSE': rmse,
                 'SRCC': srcc,
                 'PCC': pcc,
                 'KENDALL': kendall,
                 'ys_label': list(ys_label),
                 'ys_label_pred': list(ys_label_pred)}

        ys_label_raw = kwargs['ys_label_raw'] if 'ys_label_raw' in kwargs else None

        if ys_label_raw is not None:
            try:
                # AUC
                auc = AucPerfMetric(ys_label_raw, ys_label_pred) \
                    .evaluate()['score']
                stats['AUC'] = auc
            except TypeError: # AUC would not work with dictionary-style dataset
                stats['AUC'] = float('nan')

            try:
                # ResPow
                respow = ResolvingPowerPerfMetric(ys_label_raw, ys_label_pred) \
                    .evaluate()['score']
                stats['ResPow'] = respow
            except TypeError: # ResPow would not work with dictionary-style dataset
                stats['ResPow'] = float('nan')

        if 'ys_label_stddev' in kwargs and 'ys_label_stddev' and kwargs['ys_label_stddev'] is not None:
            stats['ys_label_stddev'] = kwargs['ys_label_stddev']

        return stats
Example #3
0
 def test_auc_perf_multiple_metrics(self):
     np.random.seed(1)
     groundtruths = np.random.normal(0, 1.0, [4, 10]) + np.tile(np.array([1, 2, 3, 4]), [10, 1]).T
     predictions = [[1, 2, 3, 4], [3, 1, 2, 4]]
     metric = AucPerfMetric(groundtruths, predictions)
     result = metric.evaluate()
     self.assertAlmostEqual(result['score'][0], 0.9999999999999999, places=6)
     self.assertAlmostEqual(result['AUC_BW'][0], 0.9999999999999999, places=6)
     self.assertAlmostEqual(result['AUC_DS'][0], 0.9375, places=6)
     self.assertAlmostEqual(result['CC_0'][0], 1.0, places=6)
     self.assertAlmostEqual(result['THR'][0], 1.0, places=6)
     self.assertAlmostEqual(result['score'][1], 0.8125, places=6)
     self.assertAlmostEqual(result['AUC_BW'][1], 0.8125, places=6)
     self.assertAlmostEqual(result['AUC_DS'][1], 0.6250, places=6)
     self.assertAlmostEqual(result['CC_0'][1], 0.75, places=6)
     self.assertAlmostEqual(result['THR'][1], 2, places=6)
     self.assertAlmostEqual(result['pDS_DL'][0, 1], 0.02746864, places=6)
     self.assertAlmostEqual(result['pBW_DL'][0, 1], 0.06136883, places=6)
     self.assertAlmostEqual(result['pCC0_b'][0, 1], 0.03250944, places=6)