def describe(self): accuracy = [ Measure("Accuracy: " + t, "A " + t, minimal=0, maximal=1, direction=Sorting.DESCENDING) for t in self.tags ] robustness = [ Measure("Robutsness" + t, "R " + t, minimal=0, maximal=1, direction=Sorting.DESCENDING) for t in self.tags ] length = [None] * len(self.tags) return tuple( functools.reduce( operator.add, [[a, r, n] for a, r, n in zip(accuracy, robustness, length)]))
def describe(self): return Measure("Expected average overlap", "EAO", 0, 1, Sorting.DESCENDING),
def describe(self): return Measure("Accuracy", "A", minimal=0, maximal=1, direction=Sorting.DESCENDING), \ Measure("Robustness", "R", minimal=0, direction=Sorting.ASCENDING), \ Point("AR plot", dimensions=2, abbreviation="AR", minimal=(0, 0), \ maximal=(1, 1), labels=("Robustness", "Accuracy"), trait="ar"), \ None
def describe(self): return Measure("Accuracy", "AUC", 0, 1, Sorting.DESCENDING),
def describe(self): return Measure("Failures", "F", 0, None, Sorting.ASCENDING),
def describe(self): return Measure("Precision", "Pr", minimal=0, maximal=1, direction=Sorting.DESCENDING), \ Measure("Recall", "Re", minimal=0, maximal=1, direction=Sorting.DESCENDING), \ Measure("F Score", "F", minimal=0, maximal=1, direction=Sorting.DESCENDING)
def describe(self): return tuple([ Measure(t, t, minimal=0, maximal=1, direction=Sorting.DESCENDING) for t in self.tags ] + [None] * len(self.tags))
def describe(self): return Measure("Expected average overlap", "EAO", minimal=0, maximal=1, direction=Sorting.DESCENDING),