def evaluate(self): if self._distributed: comm.synchronize() predictions = comm.gather(self._predictions, dst=0) predictions = list(itertools.chain(*predictions)) if not comm.is_main_process(): return {} else: predictions = self._predictions if len(predictions) == 0: self._logger.warning( "[PointCloudEvaluation] Did not receive valid predictions.") return {} if self._output_dir: PathManager.mkdirs(self._output_dir) file_path = os.path.join(self._output_dir, "instances_predictions.pth") with PathManager.open(file_path, "wb") as f: torch.save(predictions, f) self._results = OrderedDict() if "proposals" in predictions[0]: self._eval_box_proposals(predictions) if "instances" in predictions[0]: self._eval_predictions(predictions) # Copy so the caller can do whatever with results return copy.deepcopy(self._results)
def _write_metrics(self, metrics_dict: dict): """ Args: metrics_dict (dict): dict of scalar metrics """ metrics_dict = { k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v) for k, v in metrics_dict.items() } # gather metrics among all workers for logging # This assumes we do DDP-style training, which is currently the only # supported method in votenet. all_metrics_dict = comm.gather(metrics_dict) if comm.is_main_process(): if "data_time" in all_metrics_dict[0]: # data_time among workers can have high variance. The actual latency # caused by data_time is the maximum among workers. data_time = np.max( [x.pop("data_time") for x in all_metrics_dict]) self.storage.put_scalar("data_time", data_time) # average the rest metrics metrics_dict = { k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys() } total_losses_reduced = sum(loss for loss in metrics_dict.values()) self.storage.put_scalar("total_loss", total_losses_reduced) if len(metrics_dict) > 1: self.storage.put_scalars(**metrics_dict)
def default_setup(cfg, args): """ Perform some basic common setups at the beginning of a job, including: 1. Set up the votenet logger 2. Log basic information about environment, cmdline arguments, and config 3. Backup the config to the output directory Args: cfg (CfgNode): the full config to be used args (argparse.NameSpace): the command line arguments to be logged """ output_dir = cfg.OUTPUT_DIR if comm.is_main_process() and output_dir: PathManager.mkdirs(output_dir) rank = comm.get_rank() setup_logger(output_dir, distributed_rank=rank, name="fvcore") logger = setup_logger(output_dir, distributed_rank=rank) logger.info("Rank of current process: {}. World size: {}".format(rank, comm.get_world_size())) logger.info("Environment info:\n" + collect_env_info()) logger.info("Command line arguments: " + str(args)) if hasattr(args, "config_file") and args.config_file != "": logger.info( "Contents of args.config_file={}:\n{}".format( args.config_file, PathManager.open(args.config_file, "r").read() ) ) logger.info("Running with full config:\n{}".format(cfg)) if comm.is_main_process() and output_dir: # Note: some of our scripts may expect the existence of # config.yaml in output directory path = os.path.join(output_dir, "config.yaml") with PathManager.open(path, "w") as f: f.write(cfg.dump()) logger.info("Full config saved to {}".format(path)) # make sure each worker has a different, yet deterministic seed if specified seed_all_rng(None if cfg.SEED < 0 else cfg.SEED + rank) # cudnn benchmark has large overhead. It shouldn't be used considering the small size of # typical validation set. if not (hasattr(args, "eval_only") and args.eval_only): torch.backends.cudnn.benchmark = cfg.CUDNN_BENCHMARK
def build_hooks(self): """ Build a list of default hooks, including timing, evaluation, checkpointing, lr scheduling, precise BN, writing events. Returns: list[HookBase]: """ cfg = self.cfg.clone() cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN ret = [ hooks.IterationTimer(), hooks.LRScheduler(self.optimizer, self.scheduler), hooks.PreciseBN( # Run at the same freq as (but before) evaluation. cfg.TEST.EVAL_PERIOD, self.model, # Build a new data loader to not affect training self.build_train_loader(cfg), cfg.TEST.PRECISE_BN.NUM_ITER, ) if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model) else None, ] # Do PreciseBN before checkpointer, because it updates the model and need to # be saved by checkpointer. # This is not always the best: if checkpointing has a different frequency, # some checkpoints may have more precise statistics than others. if comm.is_main_process(): ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD)) def test_and_save_results(): self._last_eval_results = self.test(self.cfg, self.model) return self._last_eval_results # Do evaluation after checkpointer, because then if it fails, # we can use the saved checkpoint to debug. ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results)) if comm.is_main_process(): # run writers in the end, so that evaluation metrics are written ret.append(hooks.PeriodicWriter(self.build_writers(), period=20)) return ret
def evaluate(self): results = OrderedDict() for evaluator in self._evaluators: result = evaluator.evaluate() if is_main_process() and result is not None: for k, v in result.items(): assert ( k not in results ), "Different evaluators produce results with the same key {}".format( k) results[k] = v return results
def test(cls, cfg, model, evaluators=None): """ Args: cfg (CfgNode): model (nn.Module): evaluators (list[DatasetEvaluator] or None): if None, will call :meth:`build_evaluator`. Otherwise, must have the same length as `cfg.DATASETS.TEST`. Returns: dict: a dict of result metrics """ logger = logging.getLogger(__name__) if isinstance(evaluators, DatasetEvaluator): evaluators = [evaluators] if evaluators is not None: assert len(cfg.DATASETS.TEST) == len(evaluators), "{} != {}".format( len(cfg.DATASETS.TEST), len(evaluators) ) results = OrderedDict() for idx, dataset_name in enumerate(cfg.DATASETS.TEST): data_loader = cls.build_test_loader(cfg, dataset_name) # When evaluators are passed in as arguments, # implicitly assume that evaluators can be created before data_loader. if evaluators is not None: evaluator = evaluators[idx] else: try: evaluator = cls.build_evaluator(cfg, dataset_name) except NotImplementedError: logger.warning( "No evaluator found. Use `DefaultTrainer.test(evaluators=)`, " "or implement its `build_evaluator` method." ) results[dataset_name] = {} continue results_i = inference_on_dataset(model, data_loader, evaluator) results[dataset_name] = results_i if comm.is_main_process(): assert isinstance( results_i, dict ), "Evaluator must return a dict on the main process. Got {} instead.".format( results_i ) logger.info("Evaluation results for {} in csv format:".format(dataset_name)) print_csv_format(results_i) if len(results) == 1: results = list(results.values())[0] return results
def train(self): """ Run training. Returns: OrderedDict of results, if evaluation is enabled. Otherwise None. """ super().train(self.start_iter, self.max_iter) if len(self.cfg.TEST.EXPECTED_RESULTS) and comm.is_main_process(): assert hasattr( self, "_last_eval_results" ), "No evaluation results obtained during training!" verify_results(self.cfg, self._last_eval_results) return self._last_eval_results
def __init__(self, model, save_dir="", *, save_to_disk=None, **checkpointables): is_main_process = comm.is_main_process() super().__init__( model, save_dir, save_to_disk=is_main_process if save_to_disk is None else save_to_disk, **checkpointables, )
def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume) res = Trainer.test(cfg, model) if comm.is_main_process(): verify_results(cfg, res) return res """ If you'd like to do anything fancier than the standard training logic, consider writing your own training loop (see plain_train_net.py) or subclassing the trainer. """ trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train()