Example #1
0
import numpy as np
import vsSummDevs.datasets.SumMe.path_vars as dataset_pathvars
from vsSummDevs.SumEvaluation import metrics
from vsSummDevs.datasets.SumMe import SumMeMultiViewFeatureLoader

video_file_stem_names = dataset_pathvars.file_names
video_file_stem_names.sort()




t_acc_min = 0
t_acc_max = 0
t_acc_mean = 0
for video_idx, s_filename in enumerate(video_file_stem_names):
    _, user_labels, feature_sizes = SumMeMultiViewFeatureLoader.load_by_name(s_filename, doSoftmax=False)

    s_F1_scores = []
    for user_idx in range(user_labels.shape[1]):
        selected_labels = user_labels[:, user_idx]
        user_scores_list = [user_labels[:, i] for i in list(set(range(user_labels.shape[1]))-set([user_idx]))]
        s_F1_score = metrics.averaged_F1_score(y_trues=user_scores_list, y_score=selected_labels.tolist())
        s_F1_scores.append(s_F1_score)

    print "[{:02d} | {:02d}]\t{:s}: \tMin:{:.04f}\tMax:{:.04f}, Mean:{:.04f}".format(video_idx, len(video_file_stem_names), s_filename, min(s_F1_scores), max(s_F1_scores), np.mean(np.asarray(s_F1_scores)))
    t_acc_min += min(s_F1_scores)
    t_acc_max += max(s_F1_scores)
    t_acc_mean += np.mean(np.asarray(s_F1_scores))
print "Total MinAcc: {:.04f}\t MaxAcc{:.04f}\t Mean:{:.04f}".format(t_acc_min/len(video_file_stem_names), t_acc_max/len(video_file_stem_names), t_acc_mean/len(video_file_stem_names))

Example #2
0
from scipy.stats.stats import pearsonr
from sklearn.decomposition import PCA
import datasets.getShotBoundariesECCV2016 as getSegs
from vsSummDevs.datasets.SumMe import SumMeMultiViewFeatureLoader

from vsSummDevs.SumEvaluation import rep_conversions, metrics
import sklearn

videofile_stems = dataset_pathvars.file_names
videofile_stems.sort()
pdefined_segs = getSegs.getSumMeShotBoundaris()

F1_scores = 0
for video_idx, s_filename in enumerate(videofile_stems):

    video_features, user_labels, _ = SumMeMultiViewFeatureLoader.load_by_name(
        s_filename, doSoftmax=False)

    sklearn.preprocessing.normalize(video_features)
    pca = PCA(whiten=True, svd_solver='auto')
    pca.fit(video_features.transpose())
    matrix = pca.components_
    frame_contrib = np.sum(pca.components_, axis=0)

    frame_contrib = (frame_contrib - np.min(frame_contrib)) / (
        np.max(frame_contrib) - np.mean(frame_contrib))
    s_seg = pdefined_segs[s_filename]
    s_frame01scores = rep_conversions.framescore2frame01score(
        frame_contrib, s_seg)

    # s_frame01scores = rep_conversions.framescore2frame01score_sort(frame_contrib)
Example #3
0
FeatureDirecotry = ['/home/zwei/datasets/SumMe/features/ImageNet/VGG']
FeatureDirecotry.append('/home/zwei/datasets/SumMe/features/Kinetics/I3D')
FeatureDirecotry.append('/home/zwei/datasets/SumMe/features/Places/ResNet50')
FeatureDirecotry.append('/home/zwei/datasets/SumMe/features/Moments/ResNet50')
from vsSummDevs.SumEvaluation import rep_conversions, metrics
from vsSummDevs.datasets.SumMe import SumMeMultiViewFeatureLoader

# s_feature_path = feature_paths[0]

pdefined_segs = getSegs.getSumMeShotBoundaris()
videofile_stems = dataset_pathvars.file_names

F1_scores = 0
for video_idx, s_filename in enumerate(videofile_stems):

    video_features, user_labels, _ = SumMeMultiViewFeatureLoader.load_by_name(
        s_filename)
    avg_labels = np.mean(user_labels, axis=1)

    clf = svm.LinearSVR()
    clf.fit(video_features, avg_labels)

    frame_contrib = clf.predict(video_features)
    # frame_contrib = (frame_contrib- np.min(frame_contrib))/(np.max(frame_contrib)-np.mean(frame_contrib))
    # s_seg = pdefined_segs[s_filename]
    # s_frame01scores = rep_conversions.framescore2frame01score(frame_contrib, s_seg)
    #
    s_frame01scores = rep_conversions.framescore2frame01score_sort(
        frame_contrib)
    user_scores_list = [user_labels[:, i] for i in range(user_labels.shape[1])]
    s_F1_score = metrics.averaged_F1_score(y_trues=user_scores_list,
                                           y_score=s_frame01scores.tolist())
                    sum_len += s_inteval[1] - s_inteval[0]
    if sum_len > ratio * nFrames:
        return False
    return True


sample_rate = 5
pdefined_segs = getSegs.getSumMeShotBoundaris()
video_file_stem_names = dataset_pathvars.file_names
video_file_stem_names.sort()
totalF1 = 0
for video_idx, s_filename in enumerate(video_file_stem_names):

    # s_filename = video_file_stem_names[0]
    s_segments = pdefined_segs[s_filename].tolist()
    video_features, user_labels, feature_sizes = SumMeMultiViewFeatureLoader.load_by_name(
        s_filename, doSoftmax=True)
    # original_nFrames = video_features.shape[0]
    # video_features = video_features[::sample_rate, :]
    # avg_labels = np.mean(user_labels, axis=1)

    frame_entropy = SumMeMultiViewFeatureLoader.feature_entropy(
        video_features, feature_sizes)

    frame_entropy = (frame_entropy - np.min(frame_entropy)) / (
        np.max(frame_entropy) - np.min(frame_entropy))

    s_frame01scores = rep_conversions.framescore2frame01score(
        frame_entropy, s_segments)
    user_scores_list = [user_labels[:, i] for i in range(user_labels.shape[1])]
    s_F1_score = metrics.averaged_F1_score(y_trues=user_scores_list,
                                           y_score=s_frame01scores.tolist())
Example #5
0
    'Places': [2, 3],
    'Moments': [3, 4]
}

doSoftMax = False
L2NormFeature = False
# feature_type = 'Moments'

print "Do SoftMax: " + str(doSoftMax) + "\tL2Norm: " + str(L2NormFeature)
# print "Selected Type: {:s}".format(feature_type)

for video_idx, s_filename in enumerate(videofile_stems):

    # selected_feature_type= feature_set[feature_type]

    video_features, _, feature_sizes = SumMeMultiViewFeatureLoader.load_by_name(
        s_filename, doSoftmax=doSoftMax)
    feature_boundary = [0]
    feature_boundary.extend(np.cumsum(np.asarray(feature_sizes)).tolist())
    # video_features = video_features[:, feature_boundary[selected_feature_type[0]]:feature_boundary[selected_feature_type[1]]]

    if L2NormFeature:
        video_features = sklearn.preprocessing.normalize(video_features)

    n_frames = video_features.shape[0]
    key = KyLoader.searchKeyByFrame(n_frames, video_frames, dataset_keys)
    user_summary = dataset[key]['user_summary'][...]
    nfps = dataset[key]['n_frame_per_seg'][...].tolist()
    cps = dataset[key]['change_points'][...]

    positions = KyLoader.createPositions(n_frames, frame_rate)
    video_features = video_features[positions]
Example #6
0
from vsSummDevs.SumEvaluation.knapsack import knapsack_dp
import vsSummDevs.SumEvaluation.vsum_tools as vsum_tools
videofile_stems = dataset_pathvars.file_names
videofile_stems.sort()

feature_set = {
    'ImageNet': [0, 1],
    'Kinetics': [1, 2],
    'Places': [2, 3],
    'Moments': [3, 4],
    'All': [0, 4]
}

sum_summary_score = 0
for s_video_stem in videofile_stems:
    _, s_labels, _ = SumMeMultiViewFeatureLoader.load_by_name(
        s_video_stem, doSoftmax=False, featureset=feature_set['ImageNet'])
    sum_scores = np.sum(s_labels, axis=1)
    s_segments = vsSummDevs.obs_loaders.SumMeDataLoader.convertlabels2NonoverlappedSegs(
        s_labels)
    s_values = []

    updated_segments = []
    updated_values = []
    for s_segment in s_segments:
        s_len = s_segment[1] - s_segment[0]
        if s_len > 0:
            s_value = np.sum(
                sum_scores[s_segment[0]:s_segment[1]]) * 1. / s_len
            if s_value > 0:
                updated_values.append(s_value)
                updated_segments.append(s_segment)
Example #7
0
    ax.axis('equal')

    return


sample_rate = 5
video_file_stem_names = dataset_pathvars.file_names
video_file_stem_names.sort()
totalF1 = 0
save_dir = dir_utils.get_dir('t-SNEVisualization')

for video_idx, s_filename in enumerate(video_file_stem_names):
    print '[{:d} | {:d}], {:s}'.format(video_idx, len(video_file_stem_names),
                                       s_filename)
    video_features, user_labels, feature_sizes = SumMeMultiViewFeatureLoader.load_by_name(
        s_filename, doSoftmax=False)
    avg_labels = np.mean(user_labels, axis=1)
    nframes = video_features.shape[0]
    feature_dim = video_features.shape[1]
    position_features = SumMeMultiViewFeatureLoader.PositionEncoddings(
        nframes, feature_dim)
    position_features = position_features[::sample_rate, :]
    avg_labels = avg_labels[::sample_rate]
    digits_proj = TSNE(random_state=0).fit_transform(position_features)
    ax = plt.subplot(1, 1, 1)
    subscatter(ax, digits_proj, avg_labels, sample_rate)
    plt.title(s_filename)
    # ax.title(s_filename)
    #
    # plt.title("Score Distribution")
    save_name = os.path.join(save_dir,
Example #8
0
    def __init__(self,
                 split='train',
                 doSoftMax=False,
                 L2Norm=False,
                 clip_size=100,
                 sample_rate=15,
                 feature_type='ImageNet'):
        print "Softmax:\t{0}\tL2Norm\t{1}".format(doSoftMax, L2Norm)
        self.split = split
        if self.split == 'train':
            self.video_stems = train_video_stems

        elif self.split == 'val':
            self.video_stems = val_video_stems

        else:
            print "Unrecognized data split: {:s}".format(split)
            sys.exit(-1)
        self.clip_size = clip_size
        self.videofeatures = {}
        self.annotations = {}
        for s_video_stem in self.video_stems:
            s_video_features, s_labels, _ = SumMeMultiViewFeatureLoader.load_by_name(
                s_video_stem,
                doSoftmax=doSoftMax,
                featureset=feature_set[feature_type])
            s_video_features = s_video_features[::sample_rate]
            s_labels = s_labels[::sample_rate]
            if self.split == 'val':
                s_labels = s_labels[:, :15]  # if validation, keep top 15
            n_frames = s_video_features.shape[0]
            if s_video_features.shape[0] < clip_size:
                print "{:s} don't have enough frames, skipping".format(
                    s_video_stem)
                continue
            if L2Norm:
                s_video_features = sklearn.preprocessing.normalize(
                    s_video_features)
            self.videofeatures[s_video_stem] = s_video_features

            s_segs = convertlabels2segs(s_labels)
            s_annotations = []
            for s_seg in s_segs:
                s_annotation = Segment(s_video_stem)
                s_annotation.initId(startId=s_seg[0],
                                    endId=s_seg[1],
                                    length=n_frames)
                s_annotations.append(s_annotation)
            self.annotations[s_video_stem] = s_annotations
        self.r_overlap = 0.3

        self.n_videos = len(self.annotations)

        if self.split == 'train':
            self.dataset_size = 10000
        else:
            list_annotations = []
            for s_video_stem in self.annotations.keys():
                list_annotations.extend(self.annotations[s_video_stem])
            self.annotations = list_annotations
            self.dataset_size = len(self.annotations)

        self.counter = 0