Example #1
0
def _main():
    """Main function.
    """
    # parse input arguments
    opts, args = _parse_input_arguments()

    state_files = sorted(glob.glob(str(opts.foldername) + "/solution*.vtu"))

    print(state_files[0])

    tol = 1.0e-8
    maxiter = 5000

    # Create the model evaluator.
    # Get mu and mesh for the first grid. This way, the mesh doesn't need to
    # be reset in each step; this assumes of course that the mesh doesn't
    # change throughout the computation.
    print('Reading the state "' + state_files[0] + '"...')
    try:
        mesh, psi, field_data = vtkio.read_mesh(state_files[0])
    except AttributeError:
        print("Could not read from file ", state_files[0], ".")
        raise
    print(" done.")
    ginla_modelval = ginla_model_evaluator(field_data["mu"])
    ginla_modelval.set_mesh(mesh)

    # create precondictioner object
    precs = preconditioners(ginla_modelval)
    precs.set_mesh(mesh)

    # create and initial guess for the eigenvectors
    num_unknowns = len(mesh.nodes)
    num_eigenvalues = 10
    blockvector_x = np.random.rand(num_unknowns, num_eigenvalues)

    # loop over the meshes and compute
    eigenvalue_series = []
    for state_file in state_files:
        # read and set the mesh
        print()
        print('Reading the state "' + state_file + '"...')
        try:
            mesh, psi, field_data = vtkio.read_mesh(state_file)
        except AttributeError:
            print("Could not read from file ", state_file, ".")
            raise
        print(" done.")

        mu = field_data["mu"]

        ginla_modelval.set_parameter(mu)
        ginla_modelval.set_current_psi(psi)

        precs.set_parameter(mu)

        # recreate all the objects necessary to perform the precondictioner run
        ## create precondictioner
        # prec_keolu = LinearOperator( (num_unknowns, num_unknowns),
        # matvec = precs.keo_lu,
        # dtype = complex
        # )

        # create the linear operator
        ginla_jacobian = LinearOperator(
            (num_unknowns, num_unknowns),
            matvec=ginla_modelval.compute_jacobian,
            dtype=complex,
        )

        # build the kinetic energy operator
        print("Building the KEO...")
        start_time = time.clock()
        ginla_modelval._assemble_kinetic_energy_operator()
        end_time = time.clock()
        print("done. (", end_time - start_time, "s).")

        # Run the preconditioners and gather the relative residuals.
        print("Compute the eigenvalues with LOBPCG..")
        start_time = time.clock()
        eigenvalues, blockvector_x = lobpcg(ginla_jacobian, blockvector_x)
        end_time = time.clock()
        print("done (", end_time - start_time, "s,",
              len(relresvec) - 1, " iters).")
        # pp.semilogy( relresvec )
        # pp.show()

        # append the number of iterations to the data
        eigenvalue_series.append(eigenvalues)

    print(eigenvalue_series)

    ## plot the number of iterations
    # pp.plot( num_iterations, 'o' )

    ## add title and so forth
    # pp.title( 'CG convergence for $J$' )
    # pp.xlabel( 'Continuation step $k$' )
    # pp.ylabel( "Number of CG iterations till $<10^{-10}$" )

    # matplotlib2tikz.save( "pcg-iterations.tikz",
    # figurewidth = "\\figurewidth",
    # figureheight = "\\figureheight"
    # )
    # pp.show()
    return
def _main():
    """Main function.
    """
    # parse input arguments
    opts, args = _parse_input_arguments()

    state_files = sorted(glob.glob(str(opts.foldername) + "/solution*.vtu"))

    print(state_files[0])

    tol = 1.0e-8
    maxiter = 5000

    # Create the model evaluator.
    # Get mu and mesh for the first grid. This way, the mesh doesn't need to
    # be reset in each step; this assumes of course that the mesh doesn't
    # change throughout the computation.
    print('Reading the state "' + state_files[0] + '"...')
    try:
        mesh, psi, field_data = vtkio.read_mesh(state_files[0])
    except AttributeError:
        print("Could not read from file ", state_files[0], ".")
        raise
    print(" done.")
    ginla_modelval = ginla_model_evaluator(field_data["mu"])
    ginla_modelval.set_mesh(mesh)

    # create precondictioner object
    precs = preconditioners(ginla_modelval)
    precs.set_mesh(mesh)

    # create and initial guess for the eigenvectors
    num_unknowns = len(mesh.nodes)
    num_eigenvalues = 10
    blockvector_x = np.random.rand(num_unknowns, num_eigenvalues)

    # loop over the meshes and compute
    eigenvalue_series = []
    for state_file in state_files:
        # read and set the mesh
        print()
        print('Reading the state "' + state_file + '"...')
        try:
            mesh, psi, field_data = vtkio.read_mesh(state_file)
        except AttributeError:
            print("Could not read from file ", state_file, ".")
            raise
        print(" done.")

        mu = field_data["mu"]

        ginla_modelval.set_parameter(mu)
        ginla_modelval.set_current_psi(psi)

        precs.set_parameter(mu)

        # recreate all the objects necessary to perform the precondictioner run
        ## create precondictioner
        # prec_keolu = LinearOperator( (num_unknowns, num_unknowns),
        # matvec = precs.keo_lu,
        # dtype = complex
        # )

        # create the linear operator
        ginla_jacobian = LinearOperator(
            (num_unknowns, num_unknowns),
            matvec=ginla_modelval.compute_jacobian,
            dtype=complex,
        )

        # build the kinetic energy operator
        print("Building the KEO...")
        start_time = time.clock()
        ginla_modelval._assemble_kinetic_energy_operator()
        end_time = time.clock()
        print("done. (", end_time - start_time, "s).")

        # Run the preconditioners and gather the relative residuals.
        print("Compute the eigenvalues with LOBPCG..")
        start_time = time.clock()
        eigenvalues, blockvector_x = lobpcg(ginla_jacobian, blockvector_x)
        end_time = time.clock()
        print("done (", end_time - start_time, "s,", len(relresvec) - 1, " iters).")
        # pp.semilogy( relresvec )
        # pp.show()

        # append the number of iterations to the data
        eigenvalue_series.append(eigenvalues)

    print(eigenvalue_series)

    ## plot the number of iterations
    # pp.plot( num_iterations, 'o' )

    ## add title and so forth
    # pp.title( 'CG convergence for $J$' )
    # pp.xlabel( 'Continuation step $k$' )
    # pp.ylabel( "Number of CG iterations till $<10^{-10}$" )

    # matplotlib2tikz.save( "pcg-iterations.tikz",
    # figurewidth = "\\figurewidth",
    # figureheight = "\\figureheight"
    # )
    # pp.show()
    return
Example #3
0
def _main():
    '''
    Main function.
    '''
    # parse input arguments
    opts, args = _parse_input_arguments()

    state_files = sorted( glob.glob( str(opts.foldername) + '/solution*.vtu' ) )

    print state_files[0]

    tol = 1.0e-8
    maxiter = 5000

    # Create the model evaluator.
    # Get mu and mesh for the first grid. This way, the mesh doesn't need to
    # be reset in each step; this assumes of course that the mesh doesn't
    # change throughout the computation.
    print "Reading the state \"" + state_files[0] + "\"..."
    try:
        mesh, psi, field_data = vtkio.read_mesh( state_files[0] )
    except AttributeError:
        print "Could not read from file ", state_files[0], "."
        raise
    print " done."
    ginla_modelval = ginla_model_evaluator( field_data["mu"] )
    ginla_modelval.set_mesh( mesh )

    # create precondictioner object
    precs = preconditioners( ginla_modelval )
    precs.set_mesh( mesh )

    # --------------------------------------------------------------------------
    # loop over the meshes and compute
    num_iterations = []
    for state_file in state_files:
        # ----------------------------------------------------------------------
        # read and set the mesh
        print
        print "Reading the state \"" + state_file + "\"..."
        try:
            mesh, psi, field_data = vtkio.read_mesh( state_file )
        except AttributeError:
            print "Could not read from file ", state_file, "."
            raise
        print " done."

        mu = field_data["mu"]

        ginla_modelval.set_parameter( mu )
        ginla_modelval.set_current_psi( psi )

        precs.set_parameter( mu )
        # ----------------------------------------------------------------------
        # recreate all the objects necessary to perform the precondictioner run
        num_unknowns = len( mesh.nodes )

        # create preconditioner
        prec_keolu = LinearOperator( (num_unknowns, num_unknowns),
                                    matvec = precs.keo_lu,
                                    dtype = complex
                                  )

        # create the linear operator
        ginla_jacobian = LinearOperator( (num_unknowns, num_unknowns),
                                         matvec = ginla_modelval.compute_jacobian,
                                         dtype = complex
                                       )

        # create right hand side and initial guess
        rhs = np.zeros( num_unknowns )

        # initial guess for all operations
        psi0 = np.random.rand( num_unknowns ) \
             + 1j * np.random.rand( num_unknowns )

        # ----------------------------------------------------------------------
        # build the kinetic energy operator
        print "Building the KEO..."
        start_time = time.clock()
        ginla_modelval._assemble_kinetic_energy_operator()
        end_time = time.clock()
        print "done. (", end_time - start_time, "s)."
        # ----------------------------------------------------------------------
        # Run the preconditioners and gather the relative residuals.
        print "Solving the system with KEO/LU precondictioning..."
        start_time = time.clock()
        sol, info, relresvec = nm.cg_wrap( ginla_jacobian,
                                           rhs,
                                           x0 = psi0,
                                           tol = tol,
                                           maxiter = maxiter,
                                           M = prec_keolu,
                                           inner_product = 'real'
                                         )
        end_time = time.clock()
        if info == 0:
            print "success!",
        else:
            print "no convergence.",
        print " (", end_time - start_time, "s,", len(relresvec)-1 ," iters)."
        #pp.semilogy( relresvec )
        #pp.show()
        # ----------------------------------------------------------------------
        # append the number of iterations to the data
        num_iterations.append( len( relresvec ) - 1 )
        # ----------------------------------------------------------------------
    print ( num_iterations )

    # plot the number of iterations
    pp.plot( num_iterations, 'o' )

    # add title and so forth
    pp.title( 'CG convergence for $J$' )
    pp.xlabel( 'Continuation step $k$' )
    pp.ylabel( "Number of CG iterations till $<10^{-10}$" )

    matplotlib2tikz.save( "pcg-iterations.tikz",
                          figurewidth = "\\figurewidth",
                          figureheight = "\\figureheight"
                        )
    # pp.show()
    return
def _main():
    """
    Main function.
    """
    # parse input arguments
    opts, args = _parse_input_arguments()

    state_files = sorted(glob.glob(str(opts.foldername) + "/solution*.vtu"))

    print(state_files[0])

    tol = 1.0e-8
    maxiter = 5000

    # Create the model evaluator.
    # Get mu and mesh for the first grid. This way, the mesh doesn't need to
    # be reset in each step; this assumes of course that the mesh doesn't
    # change throughout the computation.
    print('Reading the state "' + state_files[0] + '"...')
    try:
        mesh, psi, field_data = vtkio.read_mesh(state_files[0])
    except AttributeError:
        print("Could not read from file ", state_files[0], ".")
        raise
    print(" done.")
    ginla_modelval = ginla_model_evaluator(field_data["mu"])
    ginla_modelval.set_mesh(mesh)

    # create precondictioner object
    precs = preconditioners(ginla_modelval)
    precs.set_mesh(mesh)

    # loop over the meshes and compute
    num_iterations = []
    for state_file in state_files:
        # read and set the mesh
        print()
        print('Reading the state "' + state_file + '"...')
        try:
            mesh, psi, field_data = vtkio.read_mesh(state_file)
        except AttributeError:
            print("Could not read from file ", state_file, ".")
            raise
        print(" done.")

        mu = field_data["mu"]

        ginla_modelval.set_parameter(mu)
        ginla_modelval.set_current_psi(psi)

        precs.set_parameter(mu)

        # recreate all the objects necessary to perform the precondictioner run
        num_unknowns = len(mesh.nodes)

        # create preconditioner
        prec_keolu = LinearOperator((num_unknowns, num_unknowns),
                                    matvec=precs.keo_lu,
                                    dtype=complex)

        # create the linear operator
        ginla_jacobian = LinearOperator(
            (num_unknowns, num_unknowns),
            matvec=ginla_modelval.compute_jacobian,
            dtype=complex,
        )

        # create right hand side and initial guess
        rhs = np.zeros(num_unknowns)

        # initial guess for all operations
        psi0 = np.random.rand(num_unknowns) + 1j * np.random.rand(num_unknowns)

        # build the kinetic energy operator
        print("Building the KEO...")
        start_time = time.clock()
        ginla_modelval._assemble_kinetic_energy_operator()
        end_time = time.clock()
        print("done. (", end_time - start_time, "s).")

        # Run the preconditioners and gather the relative residuals.
        print("Solving the system with KEO/LU precondictioning...")
        start_time = time.clock()
        sol, info, relresvec = nm.cg_wrap(
            ginla_jacobian,
            rhs,
            x0=psi0,
            tol=tol,
            maxiter=maxiter,
            M=prec_keolu,
            inner_product="real",
        )
        end_time = time.clock()
        if info == 0:
            print("success!", end=" ")
        else:
            print("no convergence.", end=" ")
        print(" (", end_time - start_time, "s,",
              len(relresvec) - 1, " iters).")
        # pp.semilogy( relresvec )
        # pp.show()

        # append the number of iterations to the data
        num_iterations.append(len(relresvec) - 1)

    print(num_iterations)

    # plot the number of iterations
    pp.plot(num_iterations, "o")

    # add title and so forth
    pp.title("CG convergence for $J$")
    pp.xlabel("Continuation step $k$")
    pp.ylabel("Number of CG iterations till $<10^{-10}$")

    matplotlib2tikz.save(
        "pcg-iterations.tikz",
        figurewidth="\\figurewidth",
        figureheight="\\figureheight",
    )
    # pp.show()
    return