def train(args, train_dataset, model, tokenizer): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler( train_dataset) if args.local_rank == -1 else DistributedSampler( train_dataset) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // ( len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len( train_dataloader ) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], "weight_decay": 0.0 }, ] optimizer = AdamW( optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total) # Check if saved optimizer or scheduler states exist if args.resume: opt_path = os.path.join(args.model_name_or_path, "optimizer.pt") sch_path = os.path.join(args.model_name_or_path, "scheduler.pt") if os.path.isfile(opt_path) and os.path.isfile(sch_path): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(opt_path)) scheduler.load_state_dict(torch.load(sch_path)) else: raise RuntimeError( f"--resume was set but there are no optimizer and scheduler states at {opt_path} and {sch_path}" ) else: logger.info( "Not checking for optimizer and scheduler state as --resume was not set. Starting afresh" ) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize( model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True, ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if args.resume: if not args.global_step: raise ValueError( "--global_step (int) has to be set when using --resume") global_step = args.global_step epochs_trained = global_step // ( len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % ( len(train_dataloader) // args.gradient_accumulation_steps) # logger.info( " Continuing training from checkpoint, will skip to saved global_step" ) logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0], ) set_seed(args) # Added here for reproductibility for _ in train_iterator: epoch_iterator = tqdm( train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3] } if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids outputs = model(**inputs) loss = outputs[ 0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean( ) # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [ -1, 0 ] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): eval_key = "eval_{}".format(key) logs[eval_key] = value loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs["learning_rate"] = learning_rate_scalar logs["loss"] = loss_scalar logging_loss = tr_loss for key, value in logs.items(): logger.info(" %s = %s", key, str(value)) tb_writer.add_scalar(key, value, global_step) print(json.dumps({**logs, **{"step": global_step}})) if args.wandb: wandb_log({**logs, **{"step": global_step}}) if args.local_rank in [ -1, 0 ] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join( args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--hypothesis_type", default=None, type=str, choices=['qa', 'rule', 'neural', 'hybrid'], help="The type of the hypothesis to use selected from the list: " + ", ".join(['qa', 'rule', 'neural', 'hybrid']), ) parser.add_argument( "--num_choices", default=4, type=int, required=True, help="Number of answer options in the task.", ) parser.add_argument("--subset", default=None, type=str, choices=['rule', 'neural'], help="Which subset of data to use.") parser.add_argument("--static_passage", action="store_true", help="Whether to use static passage.") parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions " "and checkpoints will be written. If using wandb, this will be ignored and output dir" " will be created by wandb and printed in the log.") parser.add_argument("--seed", type=int, default=42) parser.add_argument("--resume", action='store_true') # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help= "Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--max_seq_length", default=128, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--save_preds", action="store_true", help="Whether to save predictions.") parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.", ) parser.add_argument( "--no_passage", action="store_true", help= "Set this flag if you training only using answer options. This can be used to validate model behavior and to check if options don't leak the answer." ) parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") parser.add_argument("--wandb", action="store_true", help="Use wandb or not") parser.add_argument("--wandb_entity", default="ibm-cs696ds-2020", help="Team or username if using wandb") parser.add_argument('--wandb_project', default="nli4qa", help="To set project if using non default project") parser.add_argument( '--wandb_runid', help="Run id. Unique to the project. " "Should be supplied if (and only if) resuming a wandb logged run." " For new runs, it is set by wandb.") parser.add_argument("--wandb_run_name", default="") parser.add_argument( "--tags", default="", help="comma seperated (no space) list of tags for the run") args = parser.parse_args() # some validation # if 'nli-transferable' in args.model_type: # if not args.use_threshold: # logger.warning( # "Using NLI model but not using threshold." # "\n This will not work if transfering from a mcq model") # else: # if args.test and (args.threshold is None): # raise ValueError( # "threshold must be supplied if using threshold based test eval" # ) # else: # args.threshold = None # force set it to None # args.use_threshold = False # logger.info( # "Will not use threshold for non-binary classification. Will be ignored if supplied." # ) if args.wandb: args.tags = ','.join([args.task_name] + args.tags.split(",")) wandb_init(args) args = reset_output_dir(args) if (os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), False, ) logger.info(f"Using {args.n_gpu} gpus") # Set seed set_seed(args) # Prepare NLI task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) args.output_mode = output_modes[args.task_name] # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] # Evaluation and test tokenizer = tokenizer_class.from_pretrained( args.model_name_or_path, do_lower_case=args.do_lower_case) checkpoint = args.model_name_or_path model = model_class.from_pretrained(checkpoint) model.to(args.device) # setup threshold for eval args.threshold = None # make it compute threshold args.use_threshold = True args.test = False eval_result = evaluate(args, model, tokenizer, istest=False) threshold = eval_result['eval_threshold'] # setup threshold for test args.threshold = threshold args.use_threshold = True args.test = True logger.info(f"Using {args.threshold} as threshold for test") test_result = evaluate(args, model, tokenizer, istest=True) combined_result = {**eval_result, **test_result} if args.wandb: wandb_log(combined_result, step=0) return combined_result
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join( MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--do_train", action="store_true", help="Whether to run training.") parser.add_argument( "--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--do_test", action="store_true", help="Whether to run test on the test set") parser.add_argument( "--save_preds", action="store_true", help="Whether to save predictions.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step.", ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.", ) parser.add_argument( "--no_passage", action="store_true", help="Set this flag if you training only using answer options. This can be used to validate model behavior and to check if options don't leak the answer." ) parser.add_argument( "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( '--class_weights', type=float, nargs='+', help='Class weights for loss calculation') parser.add_argument( "--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument( "--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument( "--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.", ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument( "--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument( "--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument( "--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( "--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", ) parser.add_argument( '--resume', action='store_true', help="set this if you want to resume training " "using saved scheduler and optimizer states") parser.add_argument( '--global_step', type=int, help="Global step number to resume from. " "Has to be passed when using --resume") parser.add_argument( "--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument( "--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument( "--server_port", type=str, default="", help="For distant debugging.") parser.add_argument( "--wandb", action="store_true", help="Use wandb or not") parser.add_argument( '--wandb_project', default="", help="To set project if using non default project") parser.add_argument("--wandb_run_name", default="") parser.add_argument( "--tags", default="", help="comma seperated (no space) list of tags for the run") args = parser.parse_args() if args.wandb: args.tags = ','.join([args.task_name] + args.tags.split(",")) wandb_init(args) args = reset_output_dir(args) if not (args.do_eval or args.do_test) else args if (os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach( address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) # Prepare NLI task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model, loading_info = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, output_loading_info=True, ) for k, v in loading_info.items(): if v: logger.warn(f"Issue with loading...") logger.warn(f"{k}: {v}") # set class weights on the model if hasattr(model, 'class_weights'): model.class_weights = args.class_weights logger.info(f'Set class weights to {model.class_weights}') else: if args.class_weights is not None: logger.warn( 'Class weights supplied but model does not have attribute class_weights' ) if args.local_rank == 0: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples( args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = (model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob( args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel( logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: true_checkpoint = False if checkpoint.find("checkpoint") != -1: true_checkpoint = True global_step = checkpoint.split("-")[-1] if true_checkpoint else "" # if we find multiple checkpoints, means the output_dir is # parent of all ckpt dirs. We need the prefix then. prefix = checkpoint.split("/")[-1] if len(checkpoints) > 1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) if global_step and args.wandb: step = None logger.info( f"Global step type={type(global_step)}, value= {global_step}" ) try: step = int(global_step) except ValueError as e: logger.warning(e) try: step = json.loads('{"' + global_step)["step"] except json.decoder.JSONDecodeError as je: logger.warning(je) logger.warning("not logging to wandb") if step is not None: wandb_log(result, step=step) result = dict( (k + "_{}".format(global_step), v) for k, v in result.items()) results.update(result) if args.do_test and args.local_rank in [-1, 0]: if not args.do_train: args.output_dir = args.model_name_or_path checkpoints = [args.output_dir] # if args.eval_all_checkpoints: # can not use this to do test!! # checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) # logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split( "-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split( "/")[-1] if len(checkpoints) > 1 and checkpoint.find( "checkpoint") != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix, test=True) result = dict( (k + "_{}".format(global_step), v) for k, v in result.items()) results.update(result) return results
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join( MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--save_preds", action="store_true", help="Whether to save predictions.") parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.", ) parser.add_argument( "--no_passage", action="store_true", help="Set this flag if you training only using answer options. This can be used to validate model behavior and to check if options don't leak the answer." ) parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( '--class_weights', type=float, nargs='+', help='Class weights for loss calculation') parser.add_argument( "--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", ) parser.add_argument( "--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument( "--server_port", type=str, default="", help="For distant debugging.") parser.add_argument( "--wandb", action="store_true", help="Use wandb or not") parser.add_argument( '--wandb_project', default="", help="To set project if using non default project") parser.add_argument("--wandb_run_name", default="") parser.add_argument( "--tags", default="", help="comma seperated (no space) list of tags for the run") args = parser.parse_args() if args.wandb: args.tags = ','.join([args.task_name] + args.tags.split(",")) wandb_init(args) args = reset_output_dir(args) if (os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach( address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) # Set seed set_seed(args) # Prepare NLI task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) # set class weights on the model if hasattr(model, 'class_weights'): model.class_weights = args.class_weights logger.info(f'Set class weights to {model.class_weights}') else: if args.class_weights is not None: logger.warn( 'Class weights supplied but model does not have attribute class_weights' ) if args.local_rank == 0: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training # nothing # Evaluation results = {} prefix = "" result = evaluate(args, model, tokenizer, prefix=prefix) wandb_log(result, step=0) return results