def add_em_solver(self, deposition_species = []): grid_EM = picmi.Cartesian3DGrid(number_of_cells=self.number_of_cells, lower_bound=self.lower_bound, upper_bound=self.upper_bound, lower_boundary_conditions=self.pml_bc, upper_boundary_conditions=self.pml_bc) n_pass = [[1], [1], [1]] stride = [[1], [1], [1]] compensation = [[False], [False], [False]] alpha = [[0.5], [0.5], [0.5]] smoother = picmi.BinomialSmoother(n_pass=n_pass, compensation=compensation, stride=stride, alpha=alpha) self.EM_solver = picmi.ElectromagneticSolver(grid=self.grid_EM, method=self.EM_method, cfl=self.cfl, source_smoother=smoother, warp_l_correct_num_Cherenkov=False, warp_type_rz_depose=0, warp_l_setcowancoefs=True, warp_l_getrho=False, warp_deposition_species=deposition_species, warp_conductors = self.chamber.conductors, warp_conductor_dfill = picmi.warp.largepos) self.EM_solver.initialize_solver_inputs() registersolver(self.EM_solver.solver)
def add_ms_solver(self, deposition_species = []): grid_MS = picmi.Cartesian3DGrid(number_of_cells=self.number_of_cells, lower_bound=self.lower_bound, upper_bound=self.upper_bound, lower_boundary_conditions=self.dir_bc, upper_boundary_conditions=self.dir_bc, warp_conductors = self.chamber.conductors, warp_conductor_dfill = picmi.warp.largepos) self.MS_solver = picmi.MagnetostaticSolver(grid=grid_MS, warp_deposition_species=deposition_species) self.MS_solver.initialize_solver_inputs() registersolver(self.MS_solver.solver)
def measure_SEY(Ekin, Nmp, N_elec_p_mp, sey_params_dict, xgen=0, ygen=0, zgen=0, thetagen=0, phigen=0, tot_t=None, r_sphere=0.05, flag_video=False): import numpy as np import numpy.random as random #from pywarpx import picmi from warp import picmi from scipy.stats import gaussian_kde from warp.particles.Secondaries import Secondaries, warp, top, posC, time import matplotlib.pyplot as plt import parser import scipy.io as sio from scipy.constants import m_e from scipy.constants import c as c_light from io import BytesIO as StringIO from mpi4py import MPI # Construct PyECLOUD secondary emission object import PyECLOUD.sec_emission_model_ECLOUD as seec sey_mod = seec.SEY_model_ECLOUD( Emax=sey_params_dict['Emax'], del_max=sey_params_dict['del_max'], R0=sey_params_dict['R0'], E_th=sey_params_dict['E_th'], sigmafit=sey_params_dict['sigmafit'], mufit=sey_params_dict['mufit'], secondary_angle_distribution=sey_params_dict[ 'secondary_angle_distribution']) ########################## # physics parameters ########################## mysolver = 'ES' # solver type ('ES'=electrostatic; 'EM'=electromagnetic) # --- Beam ########################## # numerics parameters ########################## # geometry # --- grid dh = r_sphere / 10. xmin = -r_sphere - 0.001 xmax = -xmin ymin = -r_sphere - 0.001 ymax = -ymin zmin = -r_sphere - 0.001 zmax = -zmin nx = (xmax - xmin) / dh ny = (xmax - xmin) / dh nz = (xmax - xmin) / dh ####################################################### # compute beam size from normalized emittance and beta # Uncomment if data available ####################################################### sigmax = 2e-4 sigmay = 2.1e-4 E0 = 0.511 * 1e6 E = E0 + Ekin beam_gamma = E / E0 beam_beta = np.sqrt(1 - 1 / (beam_gamma * beam_gamma)) v = beam_beta * c_light elec_beam = picmi.Species(particle_type='electron', particle_shape='linear', name='elec_beam') #initial_distribution = gauss_dist) secelec = picmi.Species(particle_type='electron', particle_shape='linear', name='Secondary electrons') ########################## # Numeric components ########################## if mysolver == 'ES': lower_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'] upper_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'] if mysolver == 'EM': lower_boundary_conditions = ['open', 'open', 'open'] upper_boundary_conditions = ['open', 'open', 'open'] grid = picmi.Cartesian3DGrid( number_of_cells=[nx, ny, nz], lower_bound=[xmin, ymin, zmin], upper_bound=[xmax, ymax, zmax], lower_boundary_conditions=lower_boundary_conditions, upper_boundary_conditions=upper_boundary_conditions) #, #warpx_max_grid_size=32) if mysolver == 'ES': solver = picmi.ElectrostaticSolver(grid=grid) if mysolver == 'EM': smoother = picmi.BinomialSmoother(n_pass=[[1], [1], [1]], compensation=[[False], [False], [False]], stride=[[1], [1], [1]], alpha=[[0.5], [0.5], [0.5]]) solver = picmi.ElectromagneticSolver( grid=grid, method='CKC', cfl=1., source_smoother=smoother, # field_smoother = smoother, warp_l_correct_num_Cherenkov=False, warp_type_rz_depose=0, warp_l_setcowancoefs=True, warp_l_getrho=False) ########################## # Simulation setup ########################## sphere = picmi.warp.Sphere(r_sphere) box = picmi.warp.Box(xmax - xmin, ymax - ymin, zmax - zmin) wall = box - sphere sim = picmi.Simulation(solver=solver, verbose=1, cfl=1.0, warp_initialize_solver_after_generate=1) sim.conductors = wall beam_layout = picmi.PseudoRandomLayout(n_macroparticles=10**5, seed=3) sim.add_species(elec_beam, layout=beam_layout, initialize_self_field=solver == 'EM') sim.add_species(secelec, layout=None, initialize_self_field=False) ######################### # Add Dipole ######################## vmod = picmi.warp.clight * np.sqrt(1 - 1. / (beam_gamma**2)) vxgen = vmod * np.sin(thetagen) * np.cos(phigen) vygen = vmod * np.sin(thetagen) * np.sin(phigen) vzgen = vmod * np.cos(thetagen) def nonlinearsource(): Nmp_inj = Nmp * (top.it == 3) x = xgen * np.ones(Nmp_inj) y = ygen * np.ones(Nmp_inj) z = zgen * np.ones(Nmp_inj) vx = vxgen * np.ones(Nmp_inj) vy = vygen * np.ones(Nmp_inj) vz = vzgen * np.ones(Nmp_inj) elec_beam.wspecies.addparticles(x=x, y=y, z=z, vx=vx, vy=vy, vz=vz, gi=1. / beam_gamma, w=N_elec_p_mp) picmi.warp.installuserinjection(nonlinearsource) ########################## # simulation run ########################## sim.step(1) solver.solver.installconductor(sim.conductors, dfill=picmi.warp.largepos) sim.step(1) pp = warp.ParticleScraper(sim.conductors, lsavecondid=1, lsaveintercept=1, lcollectlpdata=1) sec = Secondaries(conductors=sim.conductors, l_usenew=1, pyecloud_secemi_object=sey_mod, pyecloud_nel_mp_ref=N_elec_p_mp, pyecloud_fact_clean=1e-16, pyecloud_fact_split=1.5) sec.add(incident_species=elec_beam.wspecies, emitted_species=secelec.wspecies, conductor=sim.conductors) # --- set weights of secondary electrons #secelec.wspecies.getw()[...] = elecb.wspecies.getw()[0] # define shortcuts pw = picmi.warp em = solver.solver step = pw.step top.dt = dh / v n_step = 0 tot_nsteps = int(np.ceil((tot_t / top.dt))) n_primelecs = [] n_secelecs = [] n_mp_primelecs = [] n_mp_secelecs = [] secelecs_dist = [] primelecs_dist = [] for n_step in range(tot_nsteps + 1): step(1) n_primelecs.append(np.sum(elec_beam.wspecies.getw())) n_secelecs.append(np.sum(secelec.wspecies.getw())) n_mp_primelecs.append(np.shape(elec_beam.wspecies.getw())[0]) n_mp_secelecs.append(np.shape(secelec.wspecies.getw())[0]) if flag_video: secelecs_dist.append(np.sum(secelec.wspecies.get_density(), axis=1)) primelecs_dist.append( np.sum(elec_beam.wspecies.get_density(), axis=1)) dict_out = {} dict_out['SEY'] = np.sum(secelec.wspecies.getw()) / (Nmp * N_elec_p_mp) dict_out['n_primelecs'] = np.array(n_primelecs) dict_out['n_secelecs'] = np.array(n_secelecs) dict_out['n_mp_primelecs'] = np.array(n_mp_primelecs) dict_out['n_mp_secelecs'] = np.array(n_mp_secelecs) dict_out['secelecs_dist'] = np.array(secelecs_dist) dict_out['primelecs_dist'] = np.array(primelecs_dist) dict_out['xmesh'] = solver.solver.xmesh.copy() dict_out['ymesh'] = solver.solver.ymesh.copy() dict_out['zmesh'] = solver.solver.zmesh.copy() #angle_dist =np.arctan(np.divide(secelec.wspecies.getvy(),secelec.wspecies.getvx())) #dict_out['angle_dist'] = angle_dist return dict_out
def measure_SEY(Ekin): import numpy as np import numpy.random as random #from pywarpx import picmi from warp import picmi from scipy.stats import gaussian_kde from warp.particles.Secondaries import Secondaries, warp, top, posC, time import matplotlib.pyplot as plt import parser import scipy.io as sio from scipy.constants import m_e from scipy.constants import c as c_light from io import BytesIO as StringIO from mpi4py import MPI ########################## # physics parameters ########################## mysolver = 'ES' # solver type ('ES'=electrostatic; 'EM'=electromagnetic) # --- Beam ########################## # numerics parameters ########################## # geometry r = 0.005 l = 0.1 # --- grid dh = r/10. xmin = -2*r + 0.001 xmax = -xmin ymin = -2*r + 0.001 ymax = -ymin zmin = -l - 0.001 zmax = l nx = (xmax-xmin)/dh ny = (xmax-xmin)/dh nz = (xmax-xmin)/dh ####################################################### # compute beam size from normalized emittance and beta # Uncomment if data available ####################################################### sigmax = 2e-4 sigmay = 2.1e-4 E0 = 0.511*1e6 E = E0 + Ekin beam_gamma = E/E0 beam_beta = np.sqrt(1-1/(beam_gamma*beam_gamma)) v = beam_beta*c_light elec_beam = picmi.Species(particle_type = 'electron', particle_shape = 'linear', name = 'elec_beam') #initial_distribution = gauss_dist) secelec = picmi.Species(particle_type = 'electron', particle_shape = 'linear', name = 'Secondary electrons') ########################## # Numeric components ########################## if mysolver=='ES': lower_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'] upper_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'] if mysolver=='EM': lower_boundary_conditions = ['open', 'open', 'open'] upper_boundary_conditions = ['open', 'open', 'open'] grid = picmi.Cartesian3DGrid(number_of_cells = [nx, ny, nz], lower_bound = [xmin, ymin, zmin], upper_bound = [xmax, ymax, zmax], lower_boundary_conditions = lower_boundary_conditions, upper_boundary_conditions = upper_boundary_conditions)#, #warpx_max_grid_size=32) if mysolver=='ES': solver = picmi.ElectrostaticSolver(grid = grid) if mysolver=='EM': smoother = picmi.BinomialSmoother(n_pass = [[1], [1], [1]], compensation = [[False], [False], [False]], stride = [[1], [1], [1]], alpha = [[0.5], [0.5], [0.5]]) solver = picmi.ElectromagneticSolver(grid = grid, method = 'CKC', cfl = 1., source_smoother = smoother, # field_smoother = smoother, warp_l_correct_num_Cherenkov = False, warp_type_rz_depose = 0, warp_l_setcowancoefs = True, warp_l_getrho = False) ########################## # Simulation setup ########################## wall = picmi.warp.YCylinderOut(r,l) sim = picmi.Simulation(solver = solver, verbose = 1, cfl = 1.0, warp_initialize_solver_after_generate = 1) sim.conductors = wall beam_layout = picmi.PseudoRandomLayout(n_macroparticles = 10**5, seed = 3) sim.add_species(elec_beam, layout=beam_layout, initialize_self_field = solver=='EM') sim.add_species(secelec, layout=None, initialize_self_field=False) ######################### # Add Dipole ######################### bunch_w = 1 def nonlinearsource(): NP = 1000*(top.it==3) x = 0*np.ones(NP) y = 0*np.ones(NP) z = 0*np.ones(NP) vx = np.zeros(NP) vy = np.zeros(NP) vz = picmi.warp.clight*np.sqrt(1-1./(beam_gamma**2)) elec_beam.wspecies.addparticles(x=x,y=y,z=z,vx=vx,vy=vy,vz=vz,gi = 1./beam_gamma, w=bunch_w) picmi.warp.installuserinjection(nonlinearsource) ########################## # simulation run ########################## sim.step(1) solver.solver.installconductor(sim.conductors, dfill = picmi.warp.largepos) sim.step(1) pp = warp.ParticleScraper(sim.conductors,lsavecondid=1,lsaveintercept=1,lcollectlpdata=1) #################################### # Set material parameters from file #################################### def set_params_user(maxsec, matnum): dict = parser.pos2dic('LHC_inj_72bx5.in') posC.matsurf = dict['matsurf'] posC.iprob = dict['iprob'] posC.enpar = dict['enpar'] posC.pnpar= dict['pnpar'] posC.dtspk = dict['dtspk'] posC.dtotpk = dict['dtotpk'] posC.pangsec = dict['pangsec'] posC.pr = dict['pr'] posC.sige = dict['sige'] posC.Ecr = dict['Ecr'] posC.E0tspk = dict['E0tspk'] posC.E0epk = dict['E0epk'] posC.E0w = dict['E0w'] posC.rpar1 = dict['rpar'][0] posC.rpar2 = dict['rpar'][1] posC.tpar1 = dict['tpar'][0] posC.tpar2 = dict['tpar'][1] posC.tpar3 = dict['tpar'][2] posC.tpar4 = dict['tpar'][3] posC.tpar5 = dict['tpar'][4] posC.tpar6 = dict['tpar'][5] posC.epar1 = dict['epar'][0] posC.epar2 = dict['epar'][1] posC.P1rinf = dict['P1rinf'] posC.P1einf = dict['P1einf'] posC.P1epk = dict['P1epk'] posC.powts = dict['powts'] posC.powe = dict['powe'] posC.qr = dict['qr'] sec=Secondaries(conductors=sim.conductors, set_params_user = set_params_user, l_usenew=1) sec.add(incident_species = elec_beam.wspecies, emitted_species = secelec.wspecies, conductor = sim.conductors) # --- set weights of secondary electrons #secelec.wspecies.getw()[...] = elecb.wspecies.getw()[0] # define shortcuts pw = picmi.warp em = solver.solver step=pw.step top.dt = dh/v n_step = 0 tot_t = 2*r/v tot_nsteps = int(tot_t/top.dt) for n_step in range(tot_nsteps): step(1) secondaries_count = np.sum(secelec.wspecies.getw()) return secondaries_count/1000
def warp_pyecloud_dipole(z_length=None, nx=None, ny=None, nz=None, n_bunches=None, b_spac=None, beam_gamma=None, sigmax=None, sigmay=None, sigmat=None, bunch_intensity=None, init_num_elecs=None, init_num_elecs_mp=None, By=None, pyecloud_nel_mp_ref=None, dt=None, pyecloud_fact_clean=None, pyecloud_fact_split=None, chamber_type=None, flag_save_video=None, enable_trap=True, Emax=None, del_max=None, R0=None, E_th=None, sigmafit=None, mufit=None, secondary_angle_distribution=None, N_mp_max=None, N_mp_target=None): import numpy as np import numpy.random as random from warp import picmi from scipy.stats import gaussian_kde from warp.particles.Secondaries import Secondaries, top, warp, time import matplotlib.pyplot as plt import scipy.io as sio from io import BytesIO as StringIO from scipy.constants import c as clight import sys import PyECLOUD.myfilemanager as mfm import os # Construct PyECLOUD secondary emission object import PyECLOUD.sec_emission_model_ECLOUD as seec sey_mod = seec.SEY_model_ECLOUD(Emax=Emax, del_max=del_max, R0=R0, E_th=E_th, sigmafit=sigmafit, mufit=mufit, secondary_angle_distribution='cosine_3D') ########################## # physics parameters ########################## mysolver = 'ES' # solver type ('ES'=electrostatic; 'EM'=electromagnetic) ########################## # numerics parameters ########################## # --- grid zs_dipo = -0.5 * z_length ze_dipo = 0.5 * z_length r = 23.e-3 h = 18.e-3 l = z_length unit = 1e-3 ghost = 1e-3 xmin = -r - ghost xmax = r + ghost ymin = -r - ghost ymax = r + ghost zmin = zs_dipo - 50 * unit zmax = ze_dipo + 50 * unit if chamber_type == 'LHC': chamber_area = 0.0014664200235342726 elif chamber_type == 'rect': chamber_area = 4 * r * h ########################## # Beam parameters ########################## sigmaz = sigmat * picmi.clight t_offs = b_spac - 6 * sigmat bunch_w = 1e6 bunch_macro_particles = bunch_intensity / bunch_w ####################################################### # compute beam size from normalized emittance and beta # Uncomment if data available ####################################################### bunch_rms_size = [sigmax, sigmay, sigmaz] bunch_rms_velocity = [0., 0., 0.] bunch_centroid_position = [0, 0, zs_dipo - 10 * unit] bunch_centroid_velocity = [0., 0., beam_gamma * picmi.constants.c] beam = picmi.Species(particle_type='proton', particle_shape='linear', name='beam') lower_bound = [-r, -h, zs_dipo] upper_bound = [r, h, ze_dipo] temp_file_name = 'temp_mps_info.h5' ######################################################## # if checkopoint is found reload it, # otherwise start from scratch ######################################################## if not os.path.exists(temp_file_name): x0 = random.uniform(lower_bound[0], upper_bound[0], init_num_elecs_mp) y0 = random.uniform(lower_bound[1], upper_bound[1], init_num_elecs_mp) z0 = random.uniform(lower_bound[2], upper_bound[2], init_num_elecs_mp) vx0 = np.zeros(init_num_elecs_mp) vy0 = np.zeros(init_num_elecs_mp) vz0 = np.zeros(init_num_elecs_mp) w0 = float(init_num_elecs) / float(init_num_elecs_mp) b_pass_prev = 0 else: print('############################################################') print('Temp distribution found. Regenarating and restarting') print('############################################################') dict_init_dist = mfm.dict_of_arrays_and_scalar_from_h5(temp_file_name) # Load particles status xold = dict_init_dist['x_mp'] yold = dict_init_dist['y_mp'] zold = dict_init_dist['z_mp'] uxold = dict_init_dist['ux_mp'] uyold = dict_init_dist['uy_mp'] uzold = dict_init_dist['uz_mp'] wold = dict_init_dist['w_mp'] # Reload the outputs and other auxiliary stuff numelecs = dict_init_dist['numelecs'] elecs_density = dict_init_dist['elecs_density'] N_mp = dict_init_dist['N_mp'] b_pass_prev = dict_init_dist['b_pass'] - 1 # compute the velocities invgamma = np.sqrt( 1 - picmi.clight**2 / (np.square(uxold) + np.square(uyold) + np.square(uzold))) vxold = np.multiply(invgamma, uxold) vyold = np.multiply(invgamma, uxold) vzold = np.multiply(invgamma, uxold) # perform the regeneration x0, y0, z0, vx0, vy0, vz0, w0, N_mpaa = perform_regeneration( N_mp_target, xold, yold, zold, vxold, vyold, vzold, wold) print('DEBUG N_mp: %d' % len(x0)) electron_background_dist = picmi.ParticleListDistribution(x=x0, y=y0, z=z0, vx=vx0, vy=vy0, vz=vz0, weight=w0) elecb = picmi.Species(particle_type='electron', particle_shape='linear', name='Electron background', initial_distribution=electron_background_dist) secelec = picmi.Species(particle_type='electron', particle_shape='linear', name='Secondary electrons') ########################## # Numeric components ########################## if mysolver == 'ES': lower_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'] upper_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'] if mysolver == 'EM': lower_boundary_conditions = ['open', 'open', 'open'] upper_boundary_conditions = ['open', 'open', 'open'] grid = picmi.Cartesian3DGrid( number_of_cells=[nx, ny, nz], lower_bound=[xmin, ymin, zmin], upper_bound=[xmax, ymax, zmax], lower_boundary_conditions=lower_boundary_conditions, upper_boundary_conditions=upper_boundary_conditions) if mysolver == 'ES': solver = picmi.ElectrostaticSolver(grid=grid) if mysolver == 'EM': smoother = picmi.BinomialSmoother(n_pass=[[1], [1], [1]], compensation=[[False], [False], [False]], stride=[[1], [1], [1]], alpha=[[0.5], [0.5], [0.5]]) solver = picmi.ElectromagneticSolver( grid=grid, method='CKC', cfl=1., source_smoother=smoother, warp_l_correct_num_Cherenkov=False, warp_type_rz_depose=0, warp_l_setcowancoefs=True, warp_l_getrho=False) ########################## # Simulation setup ########################## pipe = picmi.warp.ZCylinderOut(r, l, condid=1) if chamber_type == 'rect': upper_box = picmi.warp.YPlane(y0=h, ysign=1, condid=1) lower_box = picmi.warp.YPlane(y0=-h, ysign=-1, condid=1) left_box = picmi.warp.XPlane(x0=r, xsign=1, condid=1) right_box = picmi.warp.XPlane(x0=-r, xsign=-1, condid=1) sim = picmi.Simulation(solver=solver, verbose=1, cfl=1.0, warp_initialize_solver_after_generate=1) sim.conductors = upper_box + lower_box + left_box + right_box elif chamber_type == 'LHC': pipe = picmi.warp.ZCylinderOut(r, l, condid=1) upper_box = picmi.warp.YPlane(y0=h, ysign=1, condid=1) lower_box = picmi.warp.YPlane(y0=-h, ysign=-1, condid=1) sim = picmi.Simulation(solver=solver, verbose=1, cfl=1.0, warp_initialize_solver_after_generate=1) sim.conductors = pipe + upper_box + lower_box beam_layout = picmi.PseudoRandomLayout(n_macroparticles=10**5, seed=3) sim.add_species(beam, layout=beam_layout, initialize_self_field=solver == 'EM') elecb_layout = picmi.PseudoRandomLayout(n_macroparticles=init_num_elecs_mp, seed=3) sim.add_species(elecb, layout=elecb_layout, initialize_self_field=solver == 'EM') sim.add_species(secelec, layout=None, initialize_self_field=False) ######################### # Add Dipole ######################### picmi.warp.addnewdipo(zs=zs_dipo, ze=ze_dipo, by=By) def time_prof(t): val = 0 sigmat = sigmaz / picmi.clight for i in range(1, n_bunches + 1): val += bunch_macro_particles * 1. / np.sqrt( 2 * np.pi * sigmat * sigmat) * np.exp( -(t - i * b_spac + t_offs) * (t - i * b_spac + t_offs) / (2 * sigmat * sigmat)) * picmi.warp.top.dt return val def nonlinearsource(): NP = int(time_prof(top.time)) x = random.normal(bunch_centroid_position[0], bunch_rms_size[0], NP) y = random.normal(bunch_centroid_position[1], bunch_rms_size[1], NP) z = bunch_centroid_position[2] vx = random.normal(bunch_centroid_velocity[0], bunch_rms_velocity[0], NP) vy = random.normal(bunch_centroid_velocity[1], bunch_rms_velocity[1], NP) vz = picmi.warp.clight * np.sqrt(1 - 1. / (beam_gamma**2)) beam.wspecies.addparticles(x=x, y=y, z=z, vx=vx, vy=vy, vz=vz, gi=1. / beam_gamma, w=bunch_w) picmi.warp.installuserinjection(nonlinearsource) ########################## # simulation run ########################## sim.step(1) solver.solver.installconductor(sim.conductors, dfill=picmi.warp.largepos) sim.step(1) pp = warp.ParticleScraper(sim.conductors, lsavecondid=1, lsaveintercept=1, lcollectlpdata=1) sec = Secondaries(conductors=sim.conductors, l_usenew=1, pyecloud_secemi_object=sey_mod, pyecloud_nel_mp_ref=pyecloud_nel_mp_ref, pyecloud_fact_clean=pyecloud_fact_clean, pyecloud_fact_split=pyecloud_fact_split) sec.add(incident_species=elecb.wspecies, emitted_species=secelec.wspecies, conductor=sim.conductors) sec.add(incident_species=secelec.wspecies, emitted_species=secelec.wspecies, conductor=sim.conductors) # just some shortcuts pw = picmi.warp step = pw.step if mysolver == 'ES': pw.top.dt = dt def myplots(l_force=0): if l_force or pw.top.it % 10 == 0: plt.close() (Nx, Ny, Nz) = np.shape(secelec.wspecies.get_density()) fig, axs = plt.subplots(1, 2, figsize=(12, 4.5)) fig.subplots_adjust(left=0.05, bottom=0.1, right=0.97, top=0.94, wspace=0.15) d = secelec.wspecies.get_density() + elecb.wspecies.get_density( ) + beam.wspecies.get_density() d2 = secelec.wspecies.get_density() + elecb.wspecies.get_density() im1 = axs[0].imshow(d[:, :, Nz / 2].T, cmap='jet', origin='lower', vmin=0.2 * np.min(d2[:, :, Nz / 2]), vmax=0.8 * np.max(d2[:, :, Nz / 2]), extent=[xmin, xmax, ymin, ymax]) axs[0].set_xlabel('x [m]') axs[0].set_ylabel('y [m]') axs[0].set_title('e- density') fig.colorbar( im1, ax=axs[0], ) im2 = axs[1].imshow(d[Nx / 2, :, :], cmap='jet', origin='lower', vmin=0.2 * np.min(d2[Nx / 2, :, :]), vmax=0.8 * np.max(d2[Nx / 2, :, :]), extent=[zmin, zmax, ymin, ymax], aspect='auto') axs[1].set_xlabel('z [m]') axs[1].set_ylabel('y [m]') axs[1].set_title('e- density') fig.colorbar(im2, ax=axs[1]) n_step = top.time / top.dt figname = 'images/%d.png' % n_step plt.savefig(figname) if flag_save_video: pw.installafterstep(myplots) myplots(1) ntsteps_p_bunch = b_spac / top.dt tot_nsteps = int(np.ceil(b_spac * (n_bunches) / top.dt)) t_start = b_pass_prev * b_spac tstep_start = int(round(t_start / top.dt)) # pre-allocate outputs if not os.path.exists('temp_mps_info.h5'): numelecs = np.zeros(tot_nsteps) elecs_density = np.zeros((tot_nsteps, nx + 1, ny + 1, 3)) beam_density = np.zeros((tot_nsteps, nx + 1, ny + 1, 3)) N_mp = np.zeros(tot_nsteps) dict_out = {} # aux variables b_pass = 0 perc = 10 original = sys.stdout text_trap = StringIO() t0 = time.time() # trapping warp std output text_trap = {True: StringIO(), False: sys.stdout}[enable_trap] original = sys.stdout for n_step in range(tstep_start, tot_nsteps): # if a passage is starting... if n_step / ntsteps_p_bunch >= b_pass + b_pass_prev: b_pass += 1 perc = 10 if secelec.wspecies.getn() > N_mp_max: dict_out_temp = {} print('Number of macroparticles: %d' % (secelec.wspecies.getn() + elecb.wspecies.getn())) print('MAXIMUM LIMIT OF MPS HAS BEEN RACHED') print('Please restart the simulation') dict_out_temp['x_mp'] = np.concatenate( (secelec.wspecies.getx(), elecb.wspecies.getx())) dict_out_temp['y_mp'] = np.concatenate( (secelec.wspecies.gety(), elecb.wspecies.gety())) dict_out_temp['z_mp'] = np.concatenate( (secelec.wspecies.getz(), elecb.wspecies.gety())) dict_out_temp['ux_mp'] = np.concatenate( (secelec.wspecies.getux(), elecb.wspecies.getux())) dict_out_temp['uy_mp'] = np.concatenate( (secelec.wspecies.getuy(), elecb.wspecies.getuy())) dict_out_temp['uz_mp'] = np.concatenate( (secelec.wspecies.getuz(), elecb.wspecies.getuz())) dict_out_temp['w_mp'] = np.concatenate( (secelec_w, elecb.wspecies.getw())) dict_out_temp['numelecs'] = numelecs dict_out_temp['elecs_density'] = elecs_density dict_out_temp['N_mp'] = N_mp dict_out_temp['b_pass'] = b_pass + b_pass_prev filename = 'temp_mps_info.h5' mfm.dict_to_h5(dict_out_temp, filename) return print('===========================') print('Bunch passage: %d' % (b_pass + b_pass_prev)) print('Number of electrons in the dipole: %d' % (np.sum(secelec.wspecies.getw()) + np.sum(elecb.wspecies.getw()))) print('Number of macroparticles: %d' % (secelec.wspecies.getn() + elecb.wspecies.getn())) if n_step % ntsteps_p_bunch / ntsteps_p_bunch * 100 > perc: print('%d%% of bunch passage' % perc) perc = perc + 10 sys.stdout = text_trap step(1) sys.stdout = original #print(elecb.wspecies.getvy()[0]) # store outputs secelec_w = secelec.wspecies.getw() elecb_w = elecb.wspecies.getw() numelecs[n_step] = np.sum(secelec_w) + np.sum(elecb_w) elecs_density[n_step, :, :, :] = secelec.wspecies.get_density( )[:, :, (nz + 1) / 2 - 1:(nz + 1) / 2 + 2] + elecb.wspecies.get_density()[:, :, (nz + 1) / 2 - 1:(nz + 1) / 2 + 2] N_mp[n_step] = len(secelec_w) + len(elecb_w) t1 = time.time() totalt = t1 - t0 dict_out['numelecs'] = numelecs dict_out['elecs_density'] = elecs_density dict_out['N_mp'] = N_mp mfm.dict_to_h5(dict_out, 'output.h5') if os.path.exists('temp_mps_info.h5'): os.remove('temp_mps_info.h5') print('Run terminated in %ds' % totalt)
def __init__(self, z_length=None, nx=None, ny=None, nz=None, dh_t=None, n_bunches=None, b_spac=None, beam_gamma=None, sigmax=None, sigmay=None, sigmat=None, bunch_intensity=None, init_num_elecs=None, init_num_elecs_mp=None, By=None, pyecloud_nel_mp_ref=None, dt=None, pyecloud_fact_clean=None, pyecloud_fact_split=None, chamber_type=None, flag_save_video=None, enable_trap=True, Emax=None, del_max=None, R0=None, E_th=None, sigmafit=None, mufit=None, secondary_angle_distribution=None, N_mp_max=None, N_mp_target=None, flag_checkpointing=False, checkpoints=None, flag_output=False, bunch_macro_particles=None, t_offs=None, width=None, height=None, output_name='output.mat', flag_relativ_tracking=False, nbins=100, radius=None, lattice_elem=None, ghost=None, ghost_z=None, stride_imgs=10, stride_output=1000): # Construct PyECLOUD secondary emission object sey_mod = seec.SEY_model_ECLOUD( Emax=Emax, del_max=del_max, R0=R0, E_th=E_th, sigmafit=sigmafit, mufit=mufit, secondary_angle_distribution='cosine_3D') ########################## # physics parameters ########################## mysolver = 'ES' # solver type ('ES'=electrostatic; 'EM'=electromagnetic) ########################## # numerics parameters ########################## self.nbins = nbins self.N_mp_target = N_mp_target self.N_mp_max = N_mp_max self.nx = nx self.ny = ny self.nz = nz self.flag_checkpointing = flag_checkpointing self.flag_output = flag_output self.output_name = output_name self.stride_imgs = stride_imgs self.stride_output = stride_output # --- grid if lattice_elem == 'dipole': zs_dipo = -0.5 * z_length ze_dipo = 0.5 * z_length # Consistency check if chamber_type == 'rect': assert (height is not None) and ( width is not None ), 'When using rectangular chamber, height and width must be specified' if chamber_type == 'circle': assert radius is not None, 'When using circular chamber r must be specified' if chamber_type == 'LHC': radius = 23.e-3 height = 2 * 18.e-3 width = 2 * radius z_length unit = 1e-3 if ghost is None: ghost = 1e-3 if ghost_z is None: ghost_z = ghost if chamber_type == 'rect' or chamber_type == 'LHC': self.xmin = -width / 2. - ghost self.xmax = -self.xmin self.ymin = -height / 2 - ghost self.ymax = -self.ymin self.zmin = zs_dipo - 50 * unit self.zmax = ze_dipo + 50 * unit lower_bound = [-width / 2, -height / 2, zs_dipo] upper_bound = [width / 2, height / 2, ze_dipo] elif chamber_type == 'circle': self.xmin = -radius - ghost self.xmax = radius + ghost self.ymin = -radius - ghost self.ymax = radius + ghost self.zmin = zs_dipo - 50 * unit self.zmax = ze_dipo + 50 * unit lower_bound = [-radius, -radius, zs_dipo] upper_bound = [radius, radius, ze_dipo] elif chamber_type == 'crab': max_z = 500 * unit l_main_y = 242 * unit l_main_x = 300 * unit l_main_z = 350 * unit l_beam_pipe = 84 * unit l_int = 62 * unit l_main_int_y = l_main_y - 0.5 * l_beam_pipe l_main_int_z = 0.5 * l_main_z - l_int l_main_int_x = 0.5 * l_main_x - l_int self.xmin = -0.5 * l_main_x - ghost self.xmax = 0.5 * l_main_x + ghost self.ymin = -0.5 * l_main_y - ghost self.ymax = 0.5 * l_main_y + ghost self.zmin = -0.5 * max_z - 50 * unit self.zmax = 0.5 * max_z + 50 * unit lower_bound = [-0.5 * l_main_x, -0.5 * l_main_y, -0.5 * l_main_z] upper_bound = [0.5 * l_main_x, 0.5 * l_main_y, 0.5 * l_main_z] ########################## # Beam parameters ########################## sigmaz = sigmat * picmi.clight if bunch_macro_particles > 0: bunch_w = bunch_intensity / bunch_macro_particles else: bunch_w = 0 ####################################################### # compute beam size from normalized emittance and beta # Uncomment if data available ####################################################### bunch_rms_size = [sigmax, sigmay, sigmaz] bunch_rms_velocity = [0., 0., 0.] if chamber_type == 'crab': bunch_centroid_position = [0, 0, self.zmin + 10 * unit] else: bunch_centroid_position = [0, 0, zs_dipo - 10 * unit] bunch_centroid_velocity = [0., 0., beam_gamma * picmi.constants.c] self.beam = picmi.Species(particle_type='proton', particle_shape='linear', name='beam') temp_file_name = 'temp_mps_info.mat' ######################################################## # if checkopoint is found reload it, # otherwise start from scratch ######################################################## if flag_checkpointing and os.path.exists(temp_file_name): print( '############################################################') print('Temp distribution found. Regenarating and restarting') print( '############################################################') dict_init_dist = sio.loadmat(temp_file_name) # Load particles status x0 = dict_init_dist['x_mp'][0] y0 = dict_init_dist['y_mp'][0] z0 = dict_init_dist['z_mp'][0] vx0 = dict_init_dist['vx_mp'][0] vy0 = dict_init_dist['vy_mp'][0] vz0 = dict_init_dist['vz_mp'][0] w0 = dict_init_dist['nel_mp'][0] # compute the velocities #invgamma = np.sqrt(1-picmi.clight**2/(np.square(ux0)+np.square(uy0)+np.square(uz0))) #vx0 = np.multiply(invgamma,ux0) #vy0 = np.multiply(invgamma,uy0) #vz0 = np.multiply(invgamma,uy0) # Reload the outputs and other auxiliary stuff if flag_output: self.numelecs = dict_init_dist['numelecs'][0] self.N_mp = dict_init_dist['N_mp'][0] self.numelecs_tot = dict_init_dist['numelecs_tot'][0] self.xhist = dict_init_dist['xhist'] self.bins = dict_init_dist['bins'] self.b_pass_prev = dict_init_dist['b_pass'] - 1 else: if chamber_type == 'circle': x0 = random.uniform(lower_bound[0], upper_bound[0], init_num_elecs_mp) y0 = random.uniform(lower_bound[1], upper_bound[1], init_num_elecs_mp) z0 = random.uniform(lower_bound[2], upper_bound[2], init_num_elecs_mp) vx0 = np.zeros(init_num_elecs_mp) vy0 = np.zeros(init_num_elecs_mp) vz0 = np.zeros(init_num_elecs_mp) r0_sq = np.square(x0) + np.square(y0) flag_out = np.where(r0_sq > radius * radius)[0] Nout = len(flag_out) while Nout > 0: x0[flag_out] = random.uniform(lower_bound[0], upper_bound[0], Nout) y0[flag_out] = random.uniform(lower_bound[1], upper_bound[1], Nout) r0_sq = np.square(x0) + np.square(y0) flag_out = np.where(r0_sq > radius * radius)[0] Nout = len(flag_out) w0 = float(init_num_elecs) / float(init_num_elecs_mp) elif chamber_type == 'crab': x0 = random.uniform(lower_bound[0], upper_bound[0], init_num_elecs_mp) y0 = random.uniform(lower_bound[1], upper_bound[1], init_num_elecs_mp) z0 = random.uniform(lower_bound[2], upper_bound[2], init_num_elecs_mp) vx0 = np.zeros(init_num_elecs_mp) vy0 = np.zeros(init_num_elecs_mp) vz0 = np.zeros(init_num_elecs_mp) flag_out = np.where( np.logical_and( np.logical_and( np.logical_and(x0 < l_main_int_x, x0 > -l_main_int_x), np.logical_and(z0 < l_main_int_z, z0 > -l_main_int_z)), np.logical_or(y0 > 0.5 * l_beam_pipe, y0 < -0.5 * l_beam_pipe)))[0] Nout = len(flag_out) while Nout > 0: x0[flag_out] = random.uniform(lower_bound[0], upper_bound[0], Nout) y0[flag_out] = random.uniform(lower_bound[1], upper_bound[1], Nout) z0[flag_out] = random.uniform(lower_bound[2], upper_bound[2], Nout) flag_out = np.where( np.logical_and( np.logical_and( np.logical_and(x0 < l_main_int_x, x0 > -l_main_int_x), np.logical_and(z0 < l_main_int_z, z0 > -l_main_int_z)), np.logical_or(y0 > 0.5 * l_beam_pipe, y0 < -0.5 * l_beam_pipe)))[0] Nout = len(flag_out) w0 = float(init_num_elecs) / float(init_num_elecs_mp) else: x0 = random.uniform(lower_bound[0], upper_bound[0], init_num_elecs_mp) y0 = random.uniform(lower_bound[1], upper_bound[1], init_num_elecs_mp) z0 = random.uniform(lower_bound[2], upper_bound[2], init_num_elecs_mp) vx0 = np.zeros(init_num_elecs_mp) vy0 = np.zeros(init_num_elecs_mp) vz0 = np.zeros(init_num_elecs_mp) w0 = float(init_num_elecs) / float(init_num_elecs_mp) self.b_pass_prev = 0 electron_background_dist = picmi.ParticleListDistribution(x=x0, y=y0, z=z0, vx=vx0, vy=vy0, vz=vz0, weight=w0) self.elecb = picmi.Species( particle_type='electron', particle_shape='linear', name='Electron background', initial_distribution=electron_background_dist) self.secelec = picmi.Species(particle_type='electron', particle_shape='linear', name='Secondary electrons') ########################## # Numeric components ########################## if mysolver == 'ES': lower_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'] upper_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'] if mysolver == 'EM': lower_boundary_conditions = ['open', 'open', 'open'] upper_boundary_conditions = ['open', 'open', 'open'] grid = picmi.Cartesian3DGrid( number_of_cells=[self.nx, self.ny, self.nz], lower_bound=[self.xmin, self.ymin, self.zmin], upper_bound=[self.xmax, self.ymax, self.zmax], lower_boundary_conditions=lower_boundary_conditions, upper_boundary_conditions=upper_boundary_conditions) if mysolver == 'ES': solver = picmi.ElectrostaticSolver(grid=grid) if mysolver == 'EM': smoother = picmi.BinomialSmoother(n_pass=[[1], [1], [1]], compensation=[[False], [False], [False]], stride=[[1], [1], [1]], alpha=[[0.5], [0.5], [0.5]]) solver = picmi.ElectromagneticSolver( grid=grid, method='CKC', cfl=1., source_smoother=smoother, warp_l_correct_num_Cherenkov=False, warp_type_rz_depose=0, warp_l_setcowancoefs=True, warp_l_getrho=False) ########################## # Simulation setup ########################## if chamber_type == 'rect': print('Using rectangular chamber with xaper: %1.2e, yaper: %1.2e' % (width / 2., height / 2.)) upper_box = picmi.warp.YPlane(y0=height / 2., ysign=1, condid=1) lower_box = picmi.warp.YPlane(y0=-height / 2., ysign=-1, condid=1) left_box = picmi.warp.XPlane(x0=width / 2., xsign=1, condid=1) right_box = picmi.warp.XPlane(x0=-width / 2., xsign=-1, condid=1) sim = picmi.Simulation(solver=solver, verbose=1, cfl=1.0, warp_initialize_solver_after_generate=1) sim.conductors = upper_box + lower_box + left_box + right_box elif chamber_type == 'LHC': print('Using the LHC chamber') #pipe_annulus = picmi.warp.ZAnnulus(rmin = radius, rmax = radius+ghost/2, length = l, condid =1) upper_box = picmi.warp.YPlane(y0=height / 2, ysign=1, condid=1) lower_box = picmi.warp.YPlane(y0=-height / 2, ysign=-1, condid=1) pipe = picmi.warp.ZCylinderOut(radius=radius, length=z_length, condid=1) sim = picmi.Simulation(solver=solver, verbose=1, cfl=1.0, warp_initialize_solver_after_generate=1) sim.conductors = pipe + upper_box + lower_box elif chamber_type == 'circle': print('Using a circular chamber with radius %1.2e' % radius) pipe_annulus = picmi.warp.ZAnnulus(rmin=radius, rmax=radius + ghost, length=l, voltage=0., xcent=0., ycent=0., zcent=0., condid=1) pipe = picmi.warp.ZCylinderOut(radius=radius, length=l, condid=1) sim = picmi.Simulation(solver=solver, verbose=1, cfl=1.0, warp_initialize_solver_after_generate=1) sim.conductors = pipe_annulus elif chamber_type == 'crab': print('Simulating ECLOUD in a crab cavity') box1 = picmi.warp.Box(zsize=self.zmax - self.zmin, xsize=self.xmax - self.xmin, ysize=self.ymax - self.ymin) box2 = picmi.warp.Box(zsize=self.zmax - self.zmin, xsize=l_beam_pipe, ysize=l_beam_pipe) box3 = picmi.warp.Box(zsize=l_main_z, xsize=l_main_x, ysize=l_main_y) # Shape the cavity ycen1 = 0.5 * l_beam_pipe + l_main_int_y ycen2 = -ycen1 box4 = picmi.warp.Box(zsize=2 * l_main_int_z, xsize=2 * l_main_int_x, ysize=2 * l_main_int_y, ycent=ycen1) box5 = picmi.warp.Box(zsize=2 * l_main_int_z, xsize=2 * l_main_int_x, ysize=2 * l_main_int_y, ycent=ycen2) sim = picmi.Simulation(solver=solver, verbose=1, cfl=1.0, warp_initialize_solver_after_generate=1) sim.conductors = box1 - box2 - box3 + box4 + box5 sim.add_species(self.beam, layout=None, initialize_self_field=solver == 'EM') self.elecb_layout = picmi.PseudoRandomLayout( n_macroparticles=init_num_elecs_mp, seed=3) sim.add_species(self.elecb, layout=self.elecb_layout, initialize_self_field=solver == 'EM') sim.add_species(self.secelec, layout=None, initialize_self_field=False) ######################### # Add Dipole ######################### if lattice_elem == 'dipole': picmi.warp.addnewdipo(zs=zs_dipo, ze=ze_dipo, by=By) elif lattice_elem == 'crab': [self.x, self.y, self.z, self.Ex, self.Ey, self.Ez] = picmi.getdatafromtextfile("efield.txt", nskip=1, dims=[6, None]) [_, _, _, Hx, Hy, Hz] = picmi.getdatafromtextfile("hfield.txt", nskip=1, dims=[6, None]) self.Bx = Hx * picmi.mu0 self.By = Hy * picmi.mu0 self.Bz = Hz * picmi.mu0 ### Interpolate them at cell centers (as prescribed by Warp doc) self.d = abs(self.x[1] - self.x[0]) ### Number of mesh cells self.NNx = int(round(2 * np.max(self.x) / self.d)) self.NNy = int(round(2 * np.max(self.y) / self.d)) self.NNz = int(round(2 * np.max(self.z) / self.d)) ### Number of mesh vertices self.nnx = self.NNx + 1 self.nny = self.NNy + 1 self.nnz = self.NNz + 1 self.Ex3d = self.Ex.reshape(self.nnz, self.nny, self.nnx).transpose(2, 1, 0) self.Ey3d = self.Ey.reshape(self.nnz, self.nny, self.nnx).transpose(2, 1, 0) self.Ez3d = self.Ez.reshape(self.nnz, self.nny, self.nnx).transpose(2, 1, 0) self.Bx3d = self.Bx.reshape(self.nnz, self.nny, self.nnx).transpose(2, 1, 0) self.By3d = self.By.reshape(self.nnz, self.nny, self.nnx).transpose(2, 1, 0) self.Bz3d = self.Bz.reshape(self.nnz, self.nny, self.nnx).transpose(2, 1, 0) self.x3d = self.x.reshape(self.nnz, self.nny, self.nnx).transpose(2, 1, 0) self.y3d = self.y.reshape(self.nnz, self.nny, self.nnx).transpose(2, 1, 0) self.z3d = self.z.reshape(self.nnz, self.nny, self.nnx).transpose(2, 1, 0) ### Rescale the fields at convenience maxE = 57 * 1e6 kk = maxE / np.max(abs(self.Ey3d)) self.Ex3d *= kk self.Ey3d *= kk self.Ez3d *= kk self.Bx3d *= kk self.By3d *= kk self.Bz3d *= kk self.Exx = 0.125 * ( self.Ex3d[0:-1, 0:-1, 0:-1] + self.Ex3d[0:-1:, 0:-1, 1:] + self.Ex3d[0:-1, 1:, 0:-1] + self.Ex3d[0:-1, 1:, 1:] + self.Ex3d[1:, 1:, 0:-1] + self.Ex3d[1:, 1:, 1:] + self.Ex3d[1:, 0:-1, 1:] + self.Ex3d[1:, 0:-1, 0:-1]) self.Eyy = 0.125 * ( self.Ey3d[0:-1, 0:-1, 0:-1] + self.Ey3d[0:-1:, 0:-1, 1:] + self.Ey3d[0:-1, 1:, 0:-1] + self.Ey3d[0:-1, 1:, 1:] + self.Ey3d[1:, 1:, 0:-1] + self.Ey3d[1:, 1:, 1:] + self.Ey3d[1:, 0:-1, 1:] + self.Ey3d[1:, 0:-1, 0:-1]) self.Ezz = 0.125 * ( self.Ez3d[0:-1, 0:-1, 0:-1] + self.Ez3d[0:-1:, 0:-1, 1:] + self.Ez3d[0:-1, 1:, 0:-1] + self.Ez3d[0:-1, 1:, 1:] + self.Ez3d[1:, 1:, 0:-1] + self.Ez3d[1:, 1:, 1:] + self.Ez3d[1:, 0:-1, 1:] + self.Ez3d[1:, 0:-1, 0:-1]) self.Bxx = 0.125 * ( self.Bx3d[0:-1, 0:-1, 0:-1] + self.Bx3d[0:-1:, 0:-1, 1:] + self.Bx3d[0:-1, 1:, 0:-1] + self.Bx3d[0:-1, 1:, 1:] + self.Bx3d[1:, 1:, 0:-1] + self.Bx3d[1:, 1:, 1:] + self.Bx3d[1:, 0:-1, 1:] + self.Bx3d[1:, 0:-1, 0:-1]) self.Byy = 0.125 * ( self.By3d[0:-1, 0:-1, 0:-1] + self.By3d[0:-1:, 0:-1, 1:] + self.By3d[0:-1, 1:, 0:-1] + self.By3d[0:-1, 1:, 1:] + self.By3d[1:, 1:, 0:-1] + self.By3d[1:, 1:, 1:] + self.By3d[1:, 0:-1, 1:] + self.By3d[1:, 0:-1, 0:-1]) self.Bzz = 0.125 * ( self.Bz3d[0:-1, 0:-1, 0:-1] + self.Bz3d[0:-1:, 0:-1, 1:] + self.Bz3d[0:-1, 1:, 0:-1] + self.Bz3d[0:-1, 1:, 1:] + self.Bz3d[1:, 1:, 0:-1] + self.Bz3d[1:, 1:, 1:] + self.Bz3d[1:, 0:-1, 1:] + self.Bz3d[1:, 0:-1, 0:-1]) self.xx = 0.125 * ( self.x3d[0:-1, 0:-1, 0:-1] + self.x3d[0:-1:, 0:-1, 1:] + self.x3d[0:-1, 1:, 0:-1] + self.x3d[0:-1, 1:, 1:] + self.x3d[1:, 1:, 0:-1] + self.x3d[1:, 1:, 1:] + self.x3d[1:, 0:-1, 1:] + self.x3d[1:, 0:-1, 0:-1]) self.yy = 0.125 * ( self.y3d[0:-1, 0:-1, 0:-1] + self.y3d[0:-1:, 0:-1, 1:] + self.y3d[0:-1, 1:, 0:-1] + self.y3d[0:-1, 1:, 1:] + self.y3d[1:, 1:, 0:-1] + self.y3d[1:, 1:, 1:] + self.y3d[1:, 0:-1, 1:] + self.y3d[1:, 0:-1, 0:-1]) self.zz = 0.125 * ( self.z3d[0:-1, 0:-1, 0:-1] + self.z3d[0:-1:, 0:-1, 1:] + self.z3d[0:-1, 1:, 0:-1] + self.z3d[0:-1, 1:, 1:] + self.z3d[1:, 1:, 0:-1] + self.z3d[1:, 1:, 1:] + self.z3d[1:, 0:-1, 1:] + self.z3d[1:, 0:-1, 0:-1]) ### Lattice spatial parameters self.zs = np.min(self.z3d) - self.d / 2. self.ze = np.max(self.z3d) + self.d / 2. self.xs = np.min(self.x3d) - self.d / 2. self.ys = np.min(self.y3d) - self.d / 2. ### Lattice temporal parameters self.Tf = 25e-9 self.freq = 400 * 1e6 self.Nt = 1000 self.phase_disp = 0 self.time_array = np.linspace(0., self.Tf, self.Nt) self.data_arrayE = np.sin(self.time_array * self.freq * 2 * np.pi + self.phase_disp) self.data_arrayB = np.sin(self.time_array * self.freq * 2 * np.pi - np.pi / 2 + self.phase_disp) ### Create overlapped lattice elements to have E and B in the same region self.ie, self.egrid = picmi.warp.addnewegrd(self.zs, self.ze, dx=self.d, dy=self.d, xs=self.xs, ys=self.ys, time=self.time_array, data=self.data_arrayE, ex=self.Ex3d, ey=self.Ey3d, ez=self.Ez3d) picmi.warp.addnewbgrd(self.zs, self.ze, dx=self.d, dy=self.d, xs=self.xs, ys=self.ys, time=self.time_array, data=self.data_arrayB, bx=self.Bx3d, by=self.By3d, bz=self.Bz3d) def time_prof(t): val = 0 for i in range(0, n_bunches): val += bunch_macro_particles * 1. / np.sqrt( 2 * np.pi * sigmat * sigmat) * np.exp( -(t - i * b_spac - t_offs) * (t - i * b_spac - t_offs) / (2 * sigmat * sigmat)) * picmi.warp.top.dt return val def nonlinearsource(): NP = int(round(time_prof(top.time))) x = random.normal(bunch_centroid_position[0], bunch_rms_size[0], NP) y = random.normal(bunch_centroid_position[1], bunch_rms_size[1], NP) z = bunch_centroid_position[2] vx = random.normal(bunch_centroid_velocity[0], bunch_rms_velocity[0], NP) vy = random.normal(bunch_centroid_velocity[1], bunch_rms_velocity[1], NP) vz = picmi.warp.clight * np.sqrt(1 - 1. / (beam_gamma**2)) self.beam.wspecies.addparticles(x=x, y=y, z=z, vx=vx, vy=vy, vz=vz, gi=1. / beam_gamma, w=bunch_w) picmi.warp.installuserinjection(nonlinearsource) ########################## # simulation run ########################## sim.step(1) solver.solver.installconductor(sim.conductors, dfill=picmi.warp.largepos) sim.step(1) pp = warp.ParticleScraper(sim.conductors, lsavecondid=1, lsaveintercept=1, lcollectlpdata=1) sec = Secondaries(conductors=sim.conductors, l_usenew=1, pyecloud_secemi_object=sey_mod, pyecloud_nel_mp_ref=pyecloud_nel_mp_ref, pyecloud_fact_clean=pyecloud_fact_clean, pyecloud_fact_split=pyecloud_fact_split) sec.add(incident_species=self.elecb.wspecies, emitted_species=self.secelec.wspecies, conductor=sim.conductors) sec.add(incident_species=self.secelec.wspecies, emitted_species=self.secelec.wspecies, conductor=sim.conductors) #Subcycle(10) # just some shortcuts pw = picmi.warp step = pw.step if mysolver == 'ES': pw.top.dt = dt if flag_relativ_tracking: pw.top.lrelativ = pw.true else: pw.top.lrelativ = pw.false def myplots(l_force=0): if l_force or self.n_step % self.stride_imgs == 0: plt.close() (Nx, Ny, Nz) = np.shape(self.secelec.wspecies.get_density()) fig, axs = plt.subplots(1, 2, figsize=(12, 4.5)) fig.subplots_adjust(left=0.05, bottom=0.1, right=0.97, top=0.94, wspace=0.15) d = self.secelec.wspecies.get_density( ) + self.elecb.wspecies.get_density( ) + self.beam.wspecies.get_density() d2 = self.secelec.wspecies.get_density( ) + self.elecb.wspecies.get_density() im1 = axs[0].imshow( d[:, :, int(Nz / 2)].T, cmap='jet', origin='lower', vmin=0.2 * np.min(d2[:, :, int(Nz / 2)]), vmax=0.8 * np.max(d2[:, :, int(Nz / 2)]), extent=[self.xmin, self.xmax, self.ymin, self.ymax]) axs[0].set_xlabel('x [m]') axs[0].set_ylabel('y [m]') axs[0].set_title('e- density') fig.colorbar( im1, ax=axs[0], ) im2 = axs[1].imshow( d[int(Nx / 2), :, :], cmap='jet', origin='lower', vmin=0.2 * np.min(d2[int(Nx / 2), :, :]), vmax=0.8 * np.max(d2[int(Nx / 2), :, :]), extent=[self.zmin, self.zmax, self.ymin, self.ymax], aspect='auto') axs[1].set_xlabel('z [m]') axs[1].set_ylabel('y [m]') axs[1].set_title('e- density') fig.colorbar(im2, ax=axs[1]) n_step = top.time / top.dt figname = 'images/%d.png' % n_step plt.savefig(figname) if flag_save_video: pw.installafterstep(myplots) myplots(1) self.ntsteps_p_bunch = b_spac / top.dt self.tot_nsteps = int(np.ceil(b_spac * (n_bunches) / top.dt)) t_start = self.b_pass_prev * b_spac tstep_start = int(round(t_start / top.dt)) # pre-allocate outputs if self.flag_output and not (self.flag_checkpointing and os.path.exists('temp_mps_info.mat')): self.numelecs = np.zeros(self.tot_nsteps) self.numelecs_tot = np.zeros(self.tot_nsteps) self.N_mp = np.zeros(self.tot_nsteps) self.xhist = np.zeros((n_bunches, nbins)) dict_out = {} # aux variables self.b_pass = 0 self.perc = 10 self.t0 = time.time() # trapping warp std output self.text_trap = {True: StringIO(), False: sys.stdout}[enable_trap] self.original = sys.stdout self.n_step = 0
name='Secondary electrons') ########################## # Numeric components ########################## if mysolver == 'ES': lower_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'] upper_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'] if mysolver == 'EM': lower_boundary_conditions = ['open', 'open', 'open'] upper_boundary_conditions = ['open', 'open', 'open'] grid = picmi.Cartesian3DGrid( number_of_cells=[nx, ny, nz], lower_bound=[xmin, ymin, zmin], upper_bound=[xmax, ymax, zmax], lower_boundary_conditions=lower_boundary_conditions, upper_boundary_conditions=upper_boundary_conditions) #, #warpx_max_grid_size=32) if mysolver == 'ES': solver = picmi.ElectrostaticSolver(grid=grid) if mysolver == 'EM': smoother = picmi.BinomialSmoother(n_pass=[[1], [1], [1]], compensation=[[False], [False], [False]], stride=[[1], [1], [1]], alpha=[[0.5], [0.5], [0.5]]) solver = picmi.ElectromagneticSolver( grid=grid,
def warp_pyecloud_dipole(z_length=None, nx=None, ny=None, nz=None, dh_t=None, n_bunches=None, b_spac=None, beam_gamma=None, sigmax=None, sigmay=None, sigmat=None, bunch_intensity=None, init_num_elecs=None, init_num_elecs_mp=None, By=None, pyecloud_nel_mp_ref=None, dt=None, pyecloud_fact_clean=None, pyecloud_fact_split=None, chamber_type=None, flag_save_video=None, enable_trap=True, Emax=None, del_max=None, R0=None, E_th=None, sigmafit=None, mufit=None, secondary_angle_distribution=None, N_mp_max=None, N_mp_target=None, flag_checkpointing=False, checkpoints=None, flag_output=False, bunch_macro_particles=None, t_offs=None, width=None, height=None, output_name='output.mat', flag_relativ_tracking=False, nbins=100, r=None): import numpy as np import numpy.random as random from warp import picmi from scipy.stats import gaussian_kde from warp.particles.Secondaries import Secondaries, top, warp, time import matplotlib.pyplot as plt import scipy.io as sio from io import BytesIO as StringIO from scipy.constants import c as clight import sys import PyECLOUD.myfilemanager as mfm import os # Construct PyECLOUD secondary emission object import PyECLOUD.sec_emission_model_ECLOUD as seec sey_mod = seec.SEY_model_ECLOUD(Emax=Emax, del_max=del_max, R0=R0, E_th=E_th, sigmafit=sigmafit, mufit=mufit, secondary_angle_distribution='cosine_3D') ########################## # physics parameters ########################## mysolver = 'ES' # solver type ('ES'=electrostatic; 'EM'=electromagnetic) ########################## # numerics parameters ########################## # --- grid zs_dipo = -0.5 * z_length ze_dipo = 0.5 * z_length # Consistency check if chamber_type == 'rect': assert (height is not None) and ( width is not None ), 'When using rectangular chamber, height and width must be specified' if chamber_type == 'circle': assert r is not None, 'When using circular chamber r must be specified' if chamber_type == 'LHC': h = 18.e-3 l = z_length unit = 1e-3 ghost = 1e-3 if chamber_type == 'rect': xmin = -width / 2. - ghost xmax = -xmin ymin = -height / 2 - ghost ymax = -ymin lower_bound = [-width / 2, -height / 2, zs_dipo] upper_bound = [width / 2, height / 2, ze_dipo] else: xmin = -r - ghost xmax = r + ghost ymin = -r - ghost ymax = r + ghost lower_bound = [-r, -r, zs_dipo] upper_bound = [r, r, ze_dipo] zmin = zs_dipo - 50 * unit zmax = ze_dipo + 50 * unit if chamber_type == 'LHC': chamber_area = 0.0014664200235342726 elif chamber_type == 'rect': chamber_area = width * height elif chamber_type == 'circle': chamber_area = np.pi * r * r init_dist_area = (upper_bound[0] - lower_bound[0]) * (upper_bound[1] - lower_bound[1]) ########################## # Beam parameters ########################## sigmaz = sigmat * picmi.clight bunch_w = bunch_intensity / bunch_macro_particles print('DEBUG: bunch_w: %d' % bunch_w) print('DEBUG: bunch_intensity: %d' % bunch_intensity) print('DEBUG: bunch_macro_particles: %d' % bunch_macro_particles) ####################################################### # compute beam size from normalized emittance and beta # Uncomment if data available ####################################################### bunch_rms_size = [sigmax, sigmay, sigmaz] bunch_rms_velocity = [0., 0., 0.] bunch_centroid_position = [0, 0, zs_dipo - 10 * unit] bunch_centroid_velocity = [0., 0., beam_gamma * picmi.constants.c] beam = picmi.Species(particle_type='proton', particle_shape='linear', name='beam') temp_file_name = 'temp_mps_info.mat' ######################################################## # if checkopoint is found reload it, # otherwise start from scratch ######################################################## if flag_checkpointing and os.path.exists(temp_file_name): print('############################################################') print('Temp distribution found. Regenarating and restarting') print('############################################################') dict_init_dist = sio.loadmat(temp_file_name) # Load particles status x0 = dict_init_dist['x_mp'][0] y0 = dict_init_dist['y_mp'][0] z0 = dict_init_dist['z_mp'][0] ux0 = dict_init_dist['ux_mp'][0] uy0 = dict_init_dist['uy_mp'][0] uz0 = dict_init_dist['uz_mp'][0] w0 = dict_init_dist['w_mp'][0] # compute the velocities invgamma = np.sqrt(1 - picmi.clight**2 / (np.square(ux0) + np.square(uy0) + np.square(uz0))) vx0 = np.multiply(invgamma, ux0) vy0 = np.multiply(invgamma, uy0) vz0 = np.multiply(invgamma, uy0) # Reload the outputs and other auxiliary stuff if flag_output: numelecs = dict_init_dist['numelecs'][0] N_mp = dict_init_dist['N_mp'][0] numelecs_tot = dict_init_dist['numelecs_tot'][0] xhist = dict_init_dist['xhist'][0] bins = dict_init_dist['bins'][0] b_pass_prev = dict_init_dist['b_pass'] - 1 else: x0 = random.uniform(lower_bound[0], upper_bound[0], init_num_elecs_mp) y0 = random.uniform(lower_bound[1], upper_bound[1], init_num_elecs_mp) z0 = random.uniform(lower_bound[2], upper_bound[2], init_num_elecs_mp) vx0 = np.zeros(init_num_elecs_mp) vy0 = np.zeros(init_num_elecs_mp) vz0 = np.zeros(init_num_elecs_mp) w0 = float(init_num_elecs) / float(init_num_elecs_mp) #Correct the weight to the chambers size w0 = w0 * init_dist_area / chamber_area b_pass_prev = 0 electron_background_dist = picmi.ParticleListDistribution(x=x0, y=y0, z=z0, vx=vx0, vy=vy0, vz=vz0, weight=w0) elecb = picmi.Species(particle_type='electron', particle_shape='linear', name='Electron background', initial_distribution=electron_background_dist) secelec = picmi.Species(particle_type='electron', particle_shape='linear', name='Secondary electrons') ########################## # Numeric components ########################## if mysolver == 'ES': lower_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'] upper_boundary_conditions = ['dirichlet', 'dirichlet', 'dirichlet'] if mysolver == 'EM': lower_boundary_conditions = ['open', 'open', 'open'] upper_boundary_conditions = ['open', 'open', 'open'] grid = picmi.Cartesian3DGrid( number_of_cells=[nx, ny, nz], lower_bound=[xmin, ymin, zmin], upper_bound=[xmax, ymax, zmax], lower_boundary_conditions=lower_boundary_conditions, upper_boundary_conditions=upper_boundary_conditions) if mysolver == 'ES': solver = picmi.ElectrostaticSolver(grid=grid) if mysolver == 'EM': smoother = picmi.BinomialSmoother(n_pass=[[1], [1], [1]], compensation=[[False], [False], [False]], stride=[[1], [1], [1]], alpha=[[0.5], [0.5], [0.5]]) solver = picmi.ElectromagneticSolver( grid=grid, method='CKC', cfl=1., source_smoother=smoother, warp_l_correct_num_Cherenkov=False, warp_type_rz_depose=0, warp_l_setcowancoefs=True, warp_l_getrho=False) ########################## # Simulation setup ########################## if chamber_type == 'rect': print 'Using rectangular chamber with xaper: %1.2e, yaper: %1.2e' % ( width / 2., height / 2.) upper_box = picmi.warp.YPlane(y0=height / 2., ysign=1, condid=1) lower_box = picmi.warp.YPlane(y0=-height / 2., ysign=-1, condid=1) left_box = picmi.warp.XPlane(x0=width / 2., xsign=1, condid=1) right_box = picmi.warp.XPlane(x0=-width / 2., xsign=-1, condid=1) sim = picmi.Simulation(solver=solver, verbose=1, cfl=1.0, warp_initialize_solver_after_generate=1) sim.conductors = upper_box + lower_box + left_box + right_box elif chamber_type == 'LHC': print 'Using the LHC chamber' pipe_annulus = picmi.warp.ZAnnulus(rmin=r, rmax=r + ghost / 2, length=l, condid=1) upper_box = picmi.warp.YPlane(y0=h, ysign=1, condid=1) lower_box = picmi.warp.YPlane(y0=-h, ysign=-1, condid=1) pipe = picmi.warp.ZCylinderOut(radius=r, length=l, condid=1) sim = picmi.Simulation(solver=solver, verbose=1, cfl=1.0, warp_initialize_solver_after_generate=1) sim.conductors = pipe + upper_box + lower_box elif chamber_type == 'circle': print 'Using a circular chamber with radius %d' % r pipe_annulus = picmi.warp.ZAnnulus(rmin=r, rmax=r + ghost, length=l, voltage=0., xcent=0., ycent=0., zcent=0., condid=1) pipe = picmi.warp.ZCylinderOut(radius=r, length=l, condid=1) sim = picmi.Simulation(solver=solver, verbose=1, cfl=1.0, warp_initialize_solver_after_generate=1) sim.conductors = pipe beam_layout = picmi.PseudoRandomLayout(n_macroparticles=10**5, seed=3) sim.add_species(beam, layout=None, initialize_self_field=solver == 'EM') elecb_layout = picmi.PseudoRandomLayout(n_macroparticles=init_num_elecs_mp, seed=3) sim.add_species(elecb, layout=elecb_layout, initialize_self_field=solver == 'EM') sim.add_species(secelec, layout=None, initialize_self_field=False) ######################### # Add Dipole ######################### picmi.warp.addnewdipo(zs=zs_dipo, ze=ze_dipo, by=By) def time_prof(t): val = 0 for i in range(0, n_bunches): val += bunch_macro_particles * 1. / np.sqrt( 2 * np.pi * sigmat * sigmat) * np.exp( -(t - i * b_spac - t_offs) * (t - i * b_spac - t_offs) / (2 * sigmat * sigmat)) * picmi.warp.top.dt return val def nonlinearsource(): NP = int(round(time_prof(top.time))) x = random.normal(bunch_centroid_position[0], bunch_rms_size[0], NP) y = random.normal(bunch_centroid_position[1], bunch_rms_size[1], NP) z = bunch_centroid_position[2] vx = random.normal(bunch_centroid_velocity[0], bunch_rms_velocity[0], NP) vy = random.normal(bunch_centroid_velocity[1], bunch_rms_velocity[1], NP) vz = picmi.warp.clight * np.sqrt(1 - 1. / (beam_gamma**2)) beam.wspecies.addparticles(x=x, y=y, z=z, vx=vx, vy=vy, vz=vz, gi=1. / beam_gamma, w=bunch_w) picmi.warp.installuserinjection(nonlinearsource) ########################## # simulation run ########################## sim.step(1) solver.solver.installconductor(sim.conductors, dfill=picmi.warp.largepos) sim.step(1) pp = warp.ParticleScraper(sim.conductors, lsavecondid=1, lsaveintercept=1, lcollectlpdata=1) sec = Secondaries(conductors=sim.conductors, l_usenew=1, pyecloud_secemi_object=sey_mod, pyecloud_nel_mp_ref=pyecloud_nel_mp_ref, pyecloud_fact_clean=pyecloud_fact_clean, pyecloud_fact_split=pyecloud_fact_split) sec.add(incident_species=elecb.wspecies, emitted_species=secelec.wspecies, conductor=sim.conductors) sec.add(incident_species=secelec.wspecies, emitted_species=secelec.wspecies, conductor=sim.conductors) #Subcycle(10) # just some shortcuts pw = picmi.warp step = pw.step if mysolver == 'ES': pw.top.dt = dt if flag_relativ_tracking: pw.top.lrelativ = pw.true else: pw.top.lrelativ = pw.false def myplots(l_force=0): if l_force or pw.top.it % 10 == 0: plt.close() (Nx, Ny, Nz) = np.shape(secelec.wspecies.get_density()) fig, axs = plt.subplots(1, 2, figsize=(12, 4.5)) fig.subplots_adjust(left=0.05, bottom=0.1, right=0.97, top=0.94, wspace=0.15) d = secelec.wspecies.get_density() + elecb.wspecies.get_density( ) + beam.wspecies.get_density() d2 = secelec.wspecies.get_density() + elecb.wspecies.get_density() im1 = axs[0].imshow(d2[:, :, Nz / 2].T, cmap='jet', origin='lower', vmin=0.2 * np.min(d2[:, :, Nz / 2]), vmax=0.8 * np.max(d2[:, :, Nz / 2]), extent=[xmin, xmax, ymin, ymax]) axs[0].set_xlabel('x [m]') axs[0].set_ylabel('y [m]') axs[0].set_title('e- density') fig.colorbar( im1, ax=axs[0], ) im2 = axs[1].imshow(d2[Nx / 2, :, :], cmap='jet', origin='lower', vmin=0.2 * np.min(d2[Nx / 2, :, :]), vmax=0.8 * np.max(d2[Nx / 2, :, :]), extent=[zmin, zmax, ymin, ymax], aspect='auto') axs[1].set_xlabel('z [m]') axs[1].set_ylabel('y [m]') axs[1].set_title('e- density') fig.colorbar(im2, ax=axs[1]) n_step = top.time / top.dt figname = 'images/%d.png' % n_step plt.savefig(figname) if flag_save_video: pw.installafterstep(myplots) myplots(1) ntsteps_p_bunch = b_spac / top.dt tot_nsteps = int(np.ceil(b_spac * (n_bunches) / top.dt)) t_start = b_pass_prev * b_spac tstep_start = int(round(t_start / top.dt)) # pre-allocate outputs if flag_output and not (flag_checkpointing and os.path.exists('temp_mps_info.mat')): numelecs = np.zeros(tot_nsteps) numelecs_tot = np.zeros(tot_nsteps) N_mp = np.zeros(tot_nsteps) xhist = np.zeros((n_bunches, nbins)) dict_out = {} # aux variables b_pass = 0 perc = 10 original = sys.stdout text_trap = StringIO() t0 = time.time() # trapping warp std output text_trap = {True: StringIO(), False: sys.stdout}[enable_trap] original = sys.stdout for n_step in range(tstep_start, tot_nsteps): # if a passage is starting... if n_step / ntsteps_p_bunch >= b_pass + b_pass_prev: b_pass += 1 perc = 10 # Measure the duration of the previous passage if b_pass > 1: t_pass_1 = time.time() t_pass = t_pass_1 - t_pass_0 t_pass_0 = time.time() # Dump outputs if flag_output: dict_out['numelecs'] = numelecs dict_out['numelecs_tot'] = numelecs_tot dict_out['N_mp'] = N_mp # Compute the x-position histogram (xhist[b_pass - 1], bins) = np.histogram(secelec.wspecies.getx(), range=(xmin, xmax), bins=nbins, weights=secelec.wspecies.getw(), density=False) dict_out['bins'] = bins dict_out['xhist'] = xhist sio.savemat(output_name, dict_out) # Perform regeneration if needed if secelec.wspecies.getn() > N_mp_max: dict_out_temp = {} print('Number of macroparticles: %d' % (secelec.wspecies.getn())) print('MAXIMUM LIMIT OF MPS HAS BEEN RACHED') perform_regeneration(N_mp_target, secelec.wspecies, sec) # Save stuff if checkpoint if flag_checkpointing and np.any(checkpoints == b_pass + b_pass_prev) and b_pass > 1: dict_out_temp = {} print('Saving a checkpoint!') secelec_w = secelec.wspecies.getw() dict_out_temp['x_mp'] = np.concatenate( (secelec.wspecies.getx(), elecb.wspecies.getx())) dict_out_temp['y_mp'] = np.concatenate( (secelec.wspecies.gety(), elecb.wspecies.gety())) dict_out_temp['z_mp'] = np.concatenate( (secelec.wspecies.getz(), elecb.wspecies.gety())) dict_out_temp['ux_mp'] = np.concatenate( (secelec.wspecies.getux(), elecb.wspecies.getux())) dict_out_temp['uy_mp'] = np.concatenate( (secelec.wspecies.getuy(), elecb.wspecies.getuy())) dict_out_temp['uz_mp'] = np.concatenate( (secelec.wspecies.getuz(), elecb.wspecies.getuz())) dict_out_temp['w_mp'] = np.concatenate( (secelec_w, elecb.wspecies.getw())) if flag_output: dict_out_temp['numelecs'] = numelecs dict_out_temp['numelecs_tot'] = numelecs_tot dict_out_temp['N_mp'] = N_mp dict_out_temp['xhist'] = xhist dict_out_temp['bins'] = bins dict_out_temp['b_pass'] = b_pass + b_pass_prev filename = 'temp_mps_info.mat' sio.savemat(filename, dict_out_temp) print('===========================') print('Bunch passage: %d' % (b_pass + b_pass_prev)) print('Number of electrons in the dipole: %d' % (np.sum(secelec.wspecies.getw()) + np.sum(elecb.wspecies.getw()))) print('Number of macroparticles: %d' % (secelec.wspecies.getn() + elecb.wspecies.getn())) if b_pass > 1: print('Previous passage took %ds' % t_pass) if n_step % ntsteps_p_bunch / ntsteps_p_bunch * 100 > perc: print('%d%% of bunch passage' % perc) perc = perc + 10 # Perform a step sys.stdout = text_trap step(1) sys.stdout = original #if secelec.wspecies.getn()>0 and elecb.wspecies.getn()>0: # print(max(max(np.sqrt(np.square(elecb.wspecies.getvx())+np.square(elecb.wspecies.getvy())+np.square(elecb.wspecies.getvz()))), max(np.sqrt(np.square(secelec.wspecies.getvx())+np.square(secelec.wspecies.getvy())+np.square(secelec.wspecies.getvz()))))) # Store stuff to be saved if flag_output: secelec_w = secelec.wspecies.getw() elecb_w = elecb.wspecies.getw() elecs_density = secelec.wspecies.get_density( l_dividebyvolume=0)[:, :, int(nz / 2.)] + elecb.wspecies.get_density( l_dividebyvolume=0)[:, :, int(nz / 2.)] numelecs[n_step] = np.sum(elecs_density) elecs_density_tot = secelec.wspecies.get_density( l_dividebyvolume=0)[:, :, :] + elecb.wspecies.get_density( l_dividebyvolume=0)[:, :, :] numelecs_tot[n_step] = np.sum(elecs_density_tot) N_mp[n_step] = len(secelec_w) + len(elecb_w) # Timer t1 = time.time() totalt = t1 - t0 # Dump outputs if flag_output: dict_out['numelecs'] = numelecs dict_out['N_mp'] = N_mp dict_out['numelecs_tot'] = numelecs_tot dict_out['xhist'] = xhist dict_out['bins'] = bins sio.savemat(output_name, dict_out) # Delete checkpoint if found if flag_checkpointing and os.path.exists('temp_mps_info.mat'): os.remove('temp_mps_info.mat') print('Run terminated in %ds' % totalt)
def __init__(self, z_length=None, nx=None, ny=None, nz=None, solver_type='ES', n_bunches=None, b_spac=None, beam_gamma=None, sigmax=None, sigmay=None, sigmat=None, bunch_intensity=None, init_num_elecs=None, init_num_elecs_mp=None, By=None, N_subcycle=None, pyecloud_nel_mp_ref=None, dt=None, pyecloud_fact_clean=None, pyecloud_fact_split=None, chamber_type=None, flag_save_video=None, enable_trap=True, Emax=None, del_max=None, R0=None, E_th=None, sigmafit=None, mufit=None, secondary_angle_distribution=None, N_mp_max=None, N_mp_target=None, flag_checkpointing=False, checkpoints=None, flag_output=False, bunch_macro_particles=None, t_offs=None, width=None, height=None, output_filename='output.mat', flag_relativ_tracking=False, nbins=100, radius=None, ghost=None, ghost_z=None, stride_imgs=10, stride_output=1000, chamber=False, lattice_elem=None, temps_filename='temp_mps_info.mat', custom_plot=None): # Construct PyECLOUD secondary emission object sey_mod = seec.SEY_model_ECLOUD( Emax=Emax, del_max=del_max, R0=R0, E_th=E_th, sigmafit=sigmafit, mufit=mufit, secondary_angle_distribution='cosine_3D') self.nbins = nbins self.N_mp_target = N_mp_target self.N_mp_max = N_mp_max self.nx = nx self.ny = ny self.nz = nz self.flag_checkpointing = flag_checkpointing self.checkpoints = checkpoints self.flag_output = flag_output self.output_filename = output_filename self.stride_imgs = stride_imgs self.stride_output = stride_output self.beam_gamma = beam_gamma self.chamber = chamber self.init_num_elecs_mp = init_num_elecs_mp self.init_num_elecs = init_num_elecs self.n_bunches = n_bunches self.bunch_macro_particles = bunch_macro_particles self.sigmat = sigmat self.b_spac = b_spac self.t_offs = t_offs self.temps_filename = temps_filename # Just some shortcuts pw = picmi.warp step = pw.step if solver_type == 'ES': pw.top.dt = dt if flag_relativ_tracking: pw.top.lrelativ = pw.true else: pw.top.lrelativ = pw.false self.tot_nsteps = int(np.ceil(b_spac * (n_bunches) / top.dt)) self.saver = Saver(flag_output, flag_checkpointing, self.tot_nsteps, n_bunches, nbins, temps_filename=temps_filename, output_filename=output_filename) # Beam parameters sigmaz = sigmat * picmi.clight if bunch_macro_particles > 0: self.bunch_w = bunch_intensity / bunch_macro_particles else: self.bunch_w = 0 self.bunch_rms_size = [sigmax, sigmay, sigmaz] self.bunch_rms_velocity = [0., 0., 0.] self.bunch_centroid_position = [0, 0, chamber.zmin + 10e-3] self.bunch_centroid_velocity = [0., 0., beam_gamma * picmi.constants.c] # Instantiate beam self.beam = picmi.Species(particle_type='proton', particle_shape='linear', name='beam') # If checkopoint is found reload it, # otherwise start with uniform distribution self.temp_file_name = 'temp_mps_info.mat' if self.flag_checkpointing and os.path.exists(self.temp_file_name): electron_background_dist = self.load_elec_density() else: electron_background_dist = self.init_uniform_density() self.elecb = picmi.Species( particle_type='electron', particle_shape='linear', name='Electron background', initial_distribution=electron_background_dist) self.secelec = picmi.Species(particle_type='electron', particle_shape='linear', name='Secondary electrons') # Setup grid and boundary conditions if solver_type == 'ES': lower_bc = ['dirichlet', 'dirichlet', 'dirichlet'] upper_bc = ['dirichlet', 'dirichlet', 'dirichlet'] if solver_type == 'EM': lower_boundary_conditions = ['open', 'open', 'open'] upper_boundary_conditions = ['open', 'open', 'open'] grid = picmi.Cartesian3DGrid( number_of_cells=[self.nx, self.ny, self.nz], lower_bound=[chamber.xmin, chamber.ymin, chamber.zmin], upper_bound=[chamber.xmax, chamber.ymax, chamber.zmax], lower_boundary_conditions=lower_bc, upper_boundary_conditions=upper_bc) if solver_type == 'ES': solver = picmi.ElectrostaticSolver(grid=grid) elif solver_type == 'EM': smoother = picmi.BinomialSmoother(n_pass=[[1], [1], [1]], compensation=[[False], [False], [False]], stride=[[1], [1], [1]], alpha=[[0.5], [0.5], [0.5]]) solver = picmi.ElectromagneticSolver( grid=grid, method='CKC', cfl=1., source_smoother=smoother, warp_l_correct_num_Cherenkov=False, warp_type_rz_depose=0, warp_l_setcowancoefs=True, warp_l_getrho=False) # Setup simulation sim = picmi.Simulation(solver=solver, verbose=1, cfl=1.0, warp_initialize_solver_after_generate=1) sim.conductors = chamber.conductors sim.add_species(self.beam, layout=None, initialize_self_field=solver == 'EM') self.elecb_layout = picmi.PseudoRandomLayout( n_macroparticles=init_num_elecs_mp, seed=3) sim.add_species(self.elecb, layout=self.elecb_layout, initialize_self_field=solver == 'EM') sim.add_species(self.secelec, layout=None, initialize_self_field=False) picmi.warp.installuserinjection(self.bunched_beam) sim.step(1) solver.solver.installconductor(sim.conductors, dfill=picmi.warp.largepos) sim.step(1) # Setup secondary emission stuff pp = warp.ParticleScraper(sim.conductors, lsavecondid=1, lsaveintercept=1, lcollectlpdata=1) sec = Secondaries(conductors=sim.conductors, l_usenew=1, pyecloud_secemi_object=sey_mod, pyecloud_nel_mp_ref=pyecloud_nel_mp_ref, pyecloud_fact_clean=pyecloud_fact_clean, pyecloud_fact_split=pyecloud_fact_split) sec.add(incident_species=self.elecb.wspecies, emitted_species=self.secelec.wspecies, conductor=sim.conductors) sec.add(incident_species=self.secelec.wspecies, emitted_species=self.secelec.wspecies, conductor=sim.conductors) if N_subcycle is not None: Subcycle(N_subcycle) if custom_plot is not None: plot_func = custom_plot else: plot_func = self.myplots pw.installafterstep(plot_func) plot_func(1) self.ntsteps_p_bunch = b_spac / top.dt t_start = self.b_pass_prev * b_spac tstep_start = int(np.round(t_start / top.dt)) # aux variables self.b_pass = 0 self.perc = 10 self.t0 = time.time() # trapping warp std output self.text_trap = {True: StringIO(), False: sys.stdout}[enable_trap] self.original = sys.stdout self.n_step = int(np.round(self.b_pass_prev * b_spac / dt))
upper_bound=[beam_xmax, beam_ymax, beam_zmax], directed_velocity=[0., 0., beam_uz]) beam = picmi.Species(particle_type='electron', particle_shape='linear', name='beam', initial_distribution=parabolic_beam) ########################## # numerics components ########################## grid = picmi.Cartesian3DGrid( number_of_cells=[nx, ny, nz], lower_bound=[xmin, ymin, zmin], upper_bound=[xmax, ymax, zmax], lower_boundary_conditions=['open', 'open', 'open'], upper_boundary_conditions=['open', 'open', 'open'], moving_window_velocity=moving_window_velocity, warpx_max_grid_size=32) smoother = picmi.BinomialSmoother(n_pass=[[1], [1], [1]], compensation=[[False], [False], [False]], stride=[[1], [1], [1]], alpha=[[0.5], [0.5], [0.5]]) solver = picmi.ElectromagneticSolver(grid=grid, method='Yee', cfl=1., source_smoother=smoother, field_smoother=smoother, warp_l_correct_num_Cherenkov=True,
def __init__(self, fieldsolver_inputs=None, beam_inputs=None, ecloud_inputs=None, antenna_inputs=None, saving_inputs=None, simulation_inputs=None): self.defaultsfromdict(self.__fieldsolver_inputs__, fieldsolver_inputs) self.defaultsfromdict(self.__beam_inputs__, beam_inputs) self.defaultsfromdict(self.__ecloud_inputs__, ecloud_inputs) self.defaultsfromdict(self.__antenna_inputs__, antenna_inputs) self.defaultsfromdict(self.__saving_inputs__, saving_inputs) self.defaultsfromdict(self.__simulation_inputs__, simulation_inputs) # Construct PyECLOUD secondary emission object self.sey_mod = seec.SEY_model_ECLOUD(Emax=self.Emax, del_max=self.del_max, R0=self.R0, E_th=self.E_th, sigmafit=self.sigmafit, mufit=self.mufit, secondary_angle_distribution='cosine_3D') self.beam_beta = np.sqrt(1 - 1 / (self.beam_gamma ** 2)) if self.n_bunches is not None and self.tot_nsteps is not None: print("""WARNING: if both n_bunches and tot_nsteps are specified tot_nsteps is going to be ignored and the number of steps is going to be determined basing on n_bunches and dt""") if self.n_bunches is not None and self.t_end is not None: print("""WARNING: if both n_bunches and t_end are specified tot_nsteps is going to be ignored and the number of steps is going to be determined basing on n_bunches and dt""") if not os.path.exists(self.images_dir) and picmi.warp.me == 0: os.makedirs(self.images_dir) # Just some shortcuts pw = picmi.warp if self.custom_time_prof is None: self.time_prof = self.gaussian_time_prof else: self.time_prof = self.self_wrapped_custom_time_prof if self.solver_type == 'EM': if self.dt is not None: print('WARNING: dt is going to be ignored for the EM solver') else: pw.top.dt = self.dt if self.flag_relativ_tracking: pw.top.lrelativ = pw.true else: pw.top.lrelativ = pw.false # Beam parameters self.sigmaz = self.sigmat * picmi.clight if self.bunch_macro_particles > 0: self.bunch_w = self.bunch_intensity / self.bunch_macro_particles else: self.bunch_w = 0 self.bunch_rms_size = [self.sigmax, self.sigmay, self.sigmaz] self.bunch_rms_velocity = [0., 0., 0.] self.bunch_centroid_position = [0, 0, self.chamber.z_inj_beam] self.bunch_centroid_velocity = [0., 0., self.beam_beta * picmi.constants.c] self.species_names = ['beam', 'ecloud'] # Instantiate beam self.elecs_injected = False if self.flag_checkpointing and os.path.exists(self.temps_filename): self.ecloud = picmi.Species(particle_type='electron', particle_shape='linear', name=self.species_names[1], initial_distribution=self.load_elec_density()) self.elecs_injected = True else: self.ecloud = picmi.Species(particle_type='electron', particle_shape='linear', name=self.species_names[1]) self.beam = picmi.Species(particle_type='proton', particle_shape='linear', name=self.species_names[0], warp_fselfb = self.bunch_centroid_velocity[2]) self.b_pass = 0 # Setup grid and boundary conditions self.dir_bc = ['dirichlet', 'dirichlet', 'dirichlet'] self.pml_bc = ['open', 'open', 'open'] #self.pml_bc = ['dirichlet', 'dirichlet', 'dirichlet'] self.number_of_cells = [self.nx, self.ny, self.nz] self.lower_bound = [self.chamber.xmin, self.chamber.ymin, self.chamber.zmin] self.upper_bound = [self.chamber.xmax, self.chamber.ymax, self.chamber.zmax] self.grid_EM = picmi.Cartesian3DGrid(number_of_cells=self.number_of_cells, lower_bound=self.lower_bound, upper_bound=self.upper_bound, lower_boundary_conditions=self.pml_bc, upper_boundary_conditions=self.pml_bc) grid_ES = picmi.Cartesian3DGrid(number_of_cells=self.number_of_cells, lower_bound=self.lower_bound, upper_bound=self.upper_bound, lower_boundary_conditions=self.dir_bc, upper_boundary_conditions=self.dir_bc) if self.solver_type == 'ES': self.solver = picmi.ElectrostaticSolver(grid=grid_ES, warp_conductors = self.chamber.conductors, warp_conductor_dfill = picmi.warp.largepos) elif self.solver_type == 'EM': if self.source_smoothing: n_pass = [[1], [1], [1]] stride = [[1], [1], [1]] compensation = [[False], [False], [False]] alpha = [[0.5], [0.5], [0.5]] smoother = picmi.BinomialSmoother(n_pass=n_pass, compensation=compensation, stride=stride, alpha=alpha) else: smoother = None if hasattr(self, 'laser_func'): self.solver = picmi.ElectromagneticSolver(grid=self.grid_EM, method=self.EM_method, cfl=self.cfl, source_smoother=smoother, warp_l_correct_num_Cherenkov=False, warp_type_rz_depose=0, warp_l_setcowancoefs=True, warp_l_getrho=False, warp_laser_func=self.laser_func, warp_laser_source_z=self.laser_source_z, warp_laser_polangle=self.laser_polangle, warp_laser_emax=self.laser_emax, warp_laser_xmin=self.laser_xmin, warp_laser_xmax=self.laser_xmax, warp_laser_ymin=self.laser_ymin, warp_laser_ymax=self.laser_ymax, warp_conductors = self.chamber.conductors, warp_conductor_dfill = picmi.warp.largepos, warp_deposition_species =[self.ecloud.wspecies], warp_iselfb_list = [0]) else: self.solver = picmi.ElectromagneticSolver(grid=self.grid_EM, method=self.EM_method, cfl=self.cfl, source_smoother=smoother, warp_l_correct_num_Cherenkov=False, warp_type_rz_depose=0, warp_l_setcowancoefs=True, warp_l_getrho=False, warp_conductors = self.chamber.conductors, warp_conductor_dfill = picmi.warp.largepos, warp_deposition_species =[self.ecloud.wspecies], warp_iselfb_list = [0]) # Setup simulation self.sim = picmi.Simulation(solver=self.solver, verbose=1, warp_initialize_solver_after_generate=1) self.sim.add_species(self.beam, layout=None, initialize_self_field=False) self.ecloud_layout = picmi.PseudoRandomLayout( n_macroparticles=self.init_num_elecs_mp, seed=3) #tot_cells = 2 #self.nx*self.ny*self.nz #self.ecloud_layout = picmi.GriddedLayout(grid=self.grid_EM, # n_macroparticle_per_cell= np.array([2, 2, 2])) #np.array([int(self.init_num_elecs_mp/tot_cells), #int(self.init_num_elecs_mp/tot_cells), #int(self.init_num_elecs_mp/tot_cells)])) self.sim.add_species(self.ecloud, layout=self.ecloud_layout) # initialize_self_field= self.init_ecloud_fields) #init_field = self.solver_type=='EM' self.sim.step(1) if self.init_num_elecs_mp > 0 and (not self.elecs_injected): if self.t_inject_elec == 0: self.init_uniform_density() else: picmi.warp.installuserinjection(self.init_uniform_density) if self.tot_nsteps is None and self.n_bunches is not None: self.tot_nsteps = int(np.round(self.b_spac*(self.n_bunches)/top.dt)) if self.tot_nsteps is None and self.t_end is not None: self.tot_nsteps = int(np.round(self.t_end / top.dt)) # to be fixed if self.t_end is not None: self.tot_nsteps = int(np.round(self.t_end / top.dt)) elif self.tot_nsteps is None and self.n_bunches is None: raise Exception('One between n_bunches, tot_nsteps, t_end has to be specified') # needed to be consistent with the conductors self.solver.solver.current_cor = False self.flag_first_pass = True if self.bunch_macro_particles > 0: picmi.warp.installuserinjection(self.bunched_beam) # Initialize the EM fields # if self.init_em_fields: # em = self.solver.solver # me = pw.me # # fields = dict_of_arrays_and_scalar_from_h5_serial(self.folder_em_fields+'/'+str(picmi.warp.me)+'/'+self.file_em_fields) # em.fields.Ex = fields['ex']*self.em_scale_fac # em.fields.Ey = fields['ey']*self.em_scale_fac # em.fields.Ez = fields['ez']*self.em_scale_fac # em.fields.Bx = fields['bx']*self.em_scale_fac # em.fields.By = fields['by']*self.em_scale_fac # em.fields.Bz = fields['bz']*self.em_scale_fac # em.setebp() # Setup secondary emission stuff self.part_scraper = ParticleScraper(self.chamber.conductors, lsavecondid=1, lsaveintercept=1, lcollectlpdata=1) self.sec = Secondaries(conductors=self.chamber.conductors, l_usenew=1, pyecloud_secemi_object=self.sey_mod, pyecloud_nel_mp_ref=self.pyecloud_nel_mp_ref, pyecloud_fact_clean=self.pyecloud_fact_clean, pyecloud_fact_split=self.pyecloud_fact_split) self.sec.add(incident_species=self.ecloud.wspecies, emitted_species=self.ecloud.wspecies, conductor=self.chamber.conductors) self.saver = Saver(self.flag_output, self.flag_checkpointing, self.nbins, self.solver, self.sec, temps_filename=self.temps_filename, output_filename=self.output_filename, probe_filename = self.probe_filename, tot_nsteps = self.tot_nsteps, n_bunches = self.n_bunches, flag_save_ek_impacts = self.flag_save_ek_impacts) self.ntsteps_p_bunch = int(np.round(self.b_spac / top.dt)) self.n_step = int(np.round(self.b_pass * self.ntsteps_p_bunch)) if self.N_subcycle is not None: Subcycle(self.N_subcycle) if self.custom_plot is not None: pw.installafterstep(self.self_wrapped_custom_plot) # Install field probes if len(self.field_probes) > 0: self.saver.init_field_probes(np.shape(self.field_probes)[0], self.tot_nsteps, self.field_probes_dump_stride) pw.installafterstep(self.self_wrapped_probe_fun) # Install other user-specified functions for fun in self.after_step_fun_list: pw.installafterstep(fun) # aux variables self.perc = 10 self.t0 = time.time() # trapping warp std output self.text_trap = {True: StringIO(), False: sys.stdout}[self.enable_trap] self.original = sys.stdout self.print_solvers_info()