def fake_time_group_column(self, topic_id: TopicId, factor_id: FactorId,
                            name: str) -> Optional[SubjectDatasetColumn]:
     # fake a new column into subject
     if self.inspection.measureOnTime == MeasureMethod.YEAR:
         return SubjectDatasetColumn(
             columnId=self.FAKE_TIME_GROUP_COLUMN_ID,
             parameter=ComputedParameter(kind=ParameterKind.COMPUTED,
                                         type=ParameterComputeType.YEAR_OF,
                                         parameters=[
                                             TopicFactorParameter(
                                                 kind=ParameterKind.TOPIC,
                                                 topicId=topic_id,
                                                 factorId=factor_id)
                                         ]),
             alias=f'{name}_YEAR_',
             arithmetic=SubjectColumnArithmetic.NONE)
     elif self.inspection.measureOnTime == MeasureMethod.MONTH:
         return SubjectDatasetColumn(
             columnId=self.FAKE_TIME_GROUP_COLUMN_ID,
             parameter=ComputedParameter(kind=ParameterKind.COMPUTED,
                                         type=ParameterComputeType.MONTH_OF,
                                         parameters=[
                                             TopicFactorParameter(
                                                 kind=ParameterKind.TOPIC,
                                                 topicId=topic_id,
                                                 factorId=factor_id)
                                         ]),
             alias=f'{name}_MONTH_',
             arithmetic=SubjectColumnArithmetic.NONE)
     else:
         return
    def build_value_criteria_left_on_factor(
            self, topic_id: TopicId, factor_id: FactorId, value: Optional[str],
            ask_factor: Callable[[], Factor]) -> Parameter:
        value = value.strip()
        value_length = len(value.strip())
        if value_length != 1 and value_length != 2 and value_length != 4:
            # not month or year
            return self.build_topic_factor_parameter(topic_id, factor_id)

        factor: Factor = ask_factor()
        if not self.has_year_or_month(factor):
            return self.build_topic_factor_parameter(topic_id, factor_id)

        if value_length == 4:
            # year
            return ComputedParameter(kind=ParameterKind.COMPUTED,
                                     type=ParameterComputeType.YEAR_OF,
                                     parameters=[
                                         TopicFactorParameter(
                                             kind=ParameterKind.TOPIC,
                                             topicId=topic_id,
                                             factorId=factor_id)
                                     ])
        else:
            # month
            return ComputedParameter(kind=ParameterKind.COMPUTED,
                                     type=ParameterComputeType.MONTH_OF,
                                     parameters=[
                                         TopicFactorParameter(
                                             kind=ParameterKind.TOPIC,
                                             topicId=topic_id,
                                             factorId=factor_id)
                                     ])
 def action(topic_id: TopicId,
            factor_id: FactorId) -> ParameterExpression:
     values = ArrayHelper(
         segment.value).filter(lambda x: is_not_blank(x)).to_list()
     if len(values) == 0:
         raise IndicatorKernelException(
             'Value of category segment not declared.')
     if len(values) == 1 and values[0] == OtherCategorySegmentValue:
         # other values
         values = self.gather_defined_category_values(segments)
         if len(values) == 0:
             raise IndicatorKernelException(
                 'No values rather than others of category segment not declared.'
             )
         return ParameterExpression(
             left=TopicFactorParameter(kind=ParameterKind.TOPIC,
                                       topicId=topic_id,
                                       factorId=factor_id),
             operator=ParameterExpressionOperator.NOT_IN,
             right=values)
     else:
         return ParameterExpression(
             left=TopicFactorParameter(kind=ParameterKind.TOPIC,
                                       topicId=topic_id,
                                       factorId=factor_id),
             operator=ParameterExpressionOperator.IN,
             right=values)
	def fake_time_range_to_dataset_filter(self) -> Optional[ParameterJoint]:
		time_range_factor_id = self.inspection.timeRangeFactorId
		if is_blank(time_range_factor_id):
			return None
		time_range_factor = self.find_factor(time_range_factor_id, lambda: 'Time range factor not declared.')
		time_ranges = ArrayHelper(self.inspection.timeRanges) \
			.filter(lambda x: x is not None and x.value is not None).to_list()
		if len(time_ranges) == 0:
			# no ranges given
			return None

		operator = ParameterExpressionOperator.EQUALS if len(time_ranges) == 1 else ParameterExpressionOperator.IN
		right = time_ranges[0].value if len(time_ranges) == 1 \
			else ArrayHelper(time_ranges).map(lambda x: x.value).join(',')
		time_range_measure = self.inspection.timeRangeMeasure
		if self.has_year_or_month(time_range_factor):
			if time_range_measure == MeasureMethod.YEAR:
				compute_type = ParameterComputeType.YEAR_OF
			elif time_range_measure == MeasureMethod.MONTH:
				compute_type = ParameterComputeType.MONTH_OF
			else:
				raise IndicatorKernelException(
					f'Measure method[{time_range_measure}] for factor type[{time_range_factor.type}] is not supported.')
			joint = ParameterJoint(
				jointType=ParameterJointType.AND,
				filters=[
					ParameterExpression(
						left=ComputedParameter(
							kind=ParameterKind.COMPUTED,
							type=compute_type,
							parameters=[
								TopicFactorParameter(
									kind=ParameterKind.TOPIC,
									topicId=self.topic.topicId, factorId=time_range_factor_id)
							]
						),
						operator=operator,
						right=ConstantParameter(kind=ParameterKind.CONSTANT, value=str(right))
					)
				]
			)
		else:
			joint = ParameterJoint(
				jointType=ParameterJointType.AND,
				filters=[
					ParameterExpression(
						left=TopicFactorParameter(
							kind=ParameterKind.TOPIC, topicId=self.topic.topicId, factorId=time_range_factor_id),
						operator=operator,
						right=ConstantParameter(kind=ParameterKind.CONSTANT, value=str(right))
					)
				]
			)
		return joint
 def action(topic_id: TopicId,
            factor_id: FactorId) -> ParameterCondition:
     min_value = segment.value.min
     max_value = segment.value.max
     if include == RangeBucketValueIncluding.INCLUDE_MIN:
         operator_min = ParameterExpressionOperator.MORE_EQUALS
     else:
         operator_min = ParameterExpressionOperator.MORE
     if include == RangeBucketValueIncluding.INCLUDE_MIN:
         operator_max = ParameterExpressionOperator.LESS
     else:
         operator_max = ParameterExpressionOperator.LESS_EQUALS
     if is_not_blank(min_value) and is_not_blank(max_value):
         return ParameterJoint(
             jointType=ParameterJointType.AND,
             filters=[
                 ParameterExpression(left=TopicFactorParameter(
                     kind=ParameterKind.TOPIC,
                     topicId=topic_id,
                     factorId=factor_id),
                                     operator=operator_min,
                                     right=min_value),
                 ParameterExpression(left=TopicFactorParameter(
                     kind=ParameterKind.TOPIC,
                     topicId=topic_id,
                     factorId=factor_id),
                                     operator=operator_max,
                                     right=max_value)
             ])
     elif is_not_blank(min_value):
         return ParameterExpression(left=TopicFactorParameter(
             kind=ParameterKind.TOPIC,
             topicId=topic_id,
             factorId=factor_id),
                                    operator=operator_min,
                                    right=min_value)
     elif is_not_blank(max_value):
         return ParameterExpression(left=TopicFactorParameter(
             kind=ParameterKind.TOPIC,
             topicId=topic_id,
             factorId=factor_id),
                                    operator=operator_max,
                                    right=max_value)
     else:
         raise IndicatorKernelException(
             'Neither minimum not maximum value of numeric value segment is declared.'
         )
 def translate_topic_factor(
         param: TopicFactorParameter) -> TopicFactorParameter:
     factor_id = param.factorId  # alias name on subject
     dataset_column = subject_column_map.get(factor_id)
     if dataset_column is None:
         raise_400(f'Cannot find column[name={factor_id}] from subject.')
     # topicId is not need here since subject will be build as a sub query
     return TopicFactorParameter(kind=ParameterKind.TOPIC,
                                 factorId=dataset_column.columnId)
Example #7
0
 def fake_indicator_factor_to_dataset_column(self) -> SubjectDatasetColumn:
     indicator_factor = self.find_factor(
         self.indicator.factorId, lambda:
         f'Indicator[id={self.indicator.indicatorId}, name={self.indicator.name}] factor not declared.'
     )
     return SubjectDatasetColumn(columnId='1',
                                 parameter=TopicFactorParameter(
                                     kind=ParameterKind.TOPIC,
                                     topicId=self.topic.topicId,
                                     factorId=indicator_factor.factorId),
                                 alias='column_1')
	def fake_indicator_factor_to_dataset_column(
			self, column_index: int) -> Tuple[SubjectDatasetColumn, Optional[int], int]:
		indicator_factor = self.find_factor(
			self.indicator.factorId,
			lambda: f'Indicator[id={self.indicator.indicatorId}, name={self.indicator.name}] factor not declared.')
		column = SubjectDatasetColumn(
			columnId=str(column_index),
			parameter=TopicFactorParameter(
				kind=ParameterKind.TOPIC, topicId=self.topic.topicId, factorId=indicator_factor.factorId),
			alias=f'column_{column_index}'
		)
		return column, column_index, column_index + 1
def parse_variable_to_value(
		name: str, variables: PipelineVariables,
		available_schemas: List[TopicSchema], allow_in_memory_variables: bool,
		parse_from_variables: Callable[[PipelineVariables, PrincipalService, str], Tuple[bool, Any, Any]],
		principal_service: PrincipalService
) -> Tuple[bool, Union[Any, ParsedStorageParameter]]:
	"""
	the first element of the tuple is whether the variable is found in variables.
	if it is not from variables, the second element should be a topic factor parameter.
	"""
	if name.startswith('&'):
		# not from variables
		available_name = name[1:]
	elif allow_in_memory_variables:
		# try to get from memory variables
		parsed, value, parsed_value = parse_from_variables(variables, principal_service, name)
		if not parsed:
			raise DataKernelException(f'Value[{value}] cannot be parsed to date or datetime.')
		return True, parsed_value
	else:
		# still not from variables
		available_name = name

	if allow_in_memory_variables:
		# in pipeline "find by" use factor name. factor must find in given available schemas.
		# actually, the only one is the source topic of find by itself
		if len(available_schemas) == 0:
			raise DataKernelException(
				f'Variable name[{name}] is not supported, since no available topic given.')
		topic = available_schemas[0].get_topic()
		factor_name = available_name
	else:
		# in console subject use topic.factor. topic must in given available schemas
		if '.' not in available_name:
			raise DataKernelException(f'Variable name[{name}] is not supported.')
		names = available_name.split('.')
		if len(names) != 2:
			raise DataKernelException(f'Variable name[{name}] is not supported.')
		topic_name = names[0]
		factor_name = names[1]
		topic = ArrayHelper(available_schemas).map(lambda x: x.get_topic()).find(
			lambda x: x.name == topic_name)
		if topic is None:
			raise DataKernelException(f'Topic[{topic_name}] not found in given available topics.')
	factor: Optional[Factor] = ArrayHelper(available_schemas[0].get_topic().factors) \
		.find(lambda x: x.name == factor_name)
	if factor is None:
		raise DataKernelException(
			f'Factor[{factor_name}] in topic[id={topic.topicId}, name={topic.name}] not found.')
	return False, ParsedStorageTopicFactorParameter(
		TopicFactorParameter(kind=ParameterKind.TOPIC, topicId=topic.topicId, factorId=factor.factorId),
		available_schemas, principal_service, allow_in_memory_variables)
	def fake_time_group_to_dataset_column(
			self, column_index: int) -> Tuple[Optional[SubjectDatasetColumn], Optional[int], int]:
		time_group_existing, measure_on_time_factor_id, measure_on_time = self.has_time_group()
		if not time_group_existing:
			return None, None, column_index

		measure_on_time_factor = self.find_factor(
			measure_on_time_factor_id, lambda: 'Measure on time factor not declared.')
		if self.has_year_or_month(measure_on_time_factor.type):
			if measure_on_time == MeasureMethod.YEAR:
				compute_type = ParameterComputeType.YEAR_OF
			elif measure_on_time == MeasureMethod.MONTH:
				compute_type = ParameterComputeType.MONTH_OF
			else:
				raise IndicatorKernelException(
					f'Measure method[{measure_on_time}] for factor type[{measure_on_time_factor.type}] is not supported.')
			column = SubjectDatasetColumn(
				columnId=str(column_index),
				parameter=ComputedParameter(
					kind=ParameterKind.COMPUTED,
					type=compute_type,
					parameters=[
						TopicFactorParameter(
							kind=ParameterKind.TOPIC,
							topicId=self.topic.topicId, factorId=measure_on_time_factor_id)
					]
				),
				alias=f'column_{column_index}'
			)
		else:
			column = SubjectDatasetColumn(
				columnId=str(column_index),
				parameter=TopicFactorParameter(
					kind=ParameterKind.TOPIC, topicId=self.topic.topicId, factorId=measure_on_time_factor_id),
				alias=f'column_{column_index}'
			)
		return column, column_index, column_index + 1
	def to_numeric_range_case_route(
			self, segment: NumericValueSegment, include: RangeBucketValueIncluding,
			factor: Factor
	) -> Parameter:
		name = segment.name
		min_value = segment.value.min
		max_value = segment.value.max
		if include == RangeBucketValueIncluding.INCLUDE_MIN:
			min_operator = ParameterExpressionOperator.MORE_EQUALS
			max_operator = ParameterExpressionOperator.LESS
		else:
			min_operator = ParameterExpressionOperator.MORE
			max_operator = ParameterExpressionOperator.LESS_EQUALS

		return ConstantParameter(
			kind=ParameterKind.CONSTANT,
			conditional=True,
			on=ParameterJoint(
				jointType=ParameterJointType.AND,
				filters=ArrayHelper([
					None if min_value is not None else ParameterExpression(
						left=TopicFactorParameter(
							kind=ParameterKind.TOPIC, topicId=self.topic.topicId, factorId=factor.factorId),
						operator=min_operator,
						right=min_value
					),
					None if max_value is not None else ParameterExpression(
						left=TopicFactorParameter(
							kind=ParameterKind.TOPIC, topicId=self.topic.topicId, factorId=factor.factorId),
						operator=max_operator,
						right=max_value
					)
				]).map(lambda x: x is not None).to_list()
			),
			value=name
		)
	def to_category_case_route(self, segment: CategorySegment, factor: Factor) -> Parameter:
		return ConstantParameter(
			kind=ParameterKind.CONSTANT,
			conditional=True,
			on=ParameterJoint(
				jointType=ParameterJointType.AND,
				filters=[
					ParameterExpression(
						left=TopicFactorParameter(
							kind=ParameterKind.TOPIC, topicId=self.topic.topicId, factorId=factor.factorId),
						operator=ParameterExpressionOperator.IN,
						right=segment.value
					),
				]
			),
			value=segment.name
		)
	def fake_measure_on_to_dataset_column(
			self, column_index: int) -> Tuple[Optional[SubjectDatasetColumn], Optional[int], int]:
		measure_on = self.inspection.measureOn
		if measure_on is None or measure_on == InspectMeasureOn.NONE:
			return None, None, column_index
		if measure_on == InspectMeasureOn.OTHER:
			measure_on_factor_id = self.inspection.measureOnFactorId
			if is_blank(measure_on_factor_id):
				return None, None, column_index
		elif measure_on == InspectMeasureOn.VALUE:
			measure_on_factor_id = self.indicator.factorId
		else:
			return None, None, column_index
		measure_on_factor = self.find_factor(measure_on_factor_id, lambda: 'Measure on factor not declared.')

		measure_on_bucket_id = self.inspection.measureOnBucketId
		if is_blank(measure_on_bucket_id):
			if measure_on == InspectMeasureOn.OTHER:
				# using naturally classification
				column = SubjectDatasetColumn(
					columnId=str(column_index),
					parameter=TopicFactorParameter(
						kind=ParameterKind.TOPIC, topicId=self.topic.topicId, factorId=measure_on_factor_id),
					alias=f'column_{column_index}'
				)
			else:
				raise IndicatorKernelException('Measure on bucket not declared.')
		else:
			bucket = ask_bucket(measure_on_bucket_id, self.principalService)
			if measure_on == InspectMeasureOn.VALUE:
				bucket = self.to_numeric_segments_bucket(bucket)
				include = RangeBucketValueIncluding.INCLUDE_MIN if bucket.include is None else bucket.include
				# at least has one value
				segments = ArrayHelper(bucket.segments) \
					.filter(lambda x: x.value is not None) \
					.filter(lambda x: x.value.min is not None or x.value.max is not None) \
					.to_list()
				if len(segments) == 0:
					raise IndicatorKernelException('Numeric range segments not declared.')
				column = SubjectDatasetColumn(
					columnId=str(column_index),
					parameter=ComputedParameter(
						kind=ParameterKind.COMPUTED, type=ParameterComputeType.CASE_THEN,
						parameters=[
							*ArrayHelper(segments).map(
								lambda x: self.to_numeric_range_case_route(x, include, measure_on_factor)).to_list(),
							# an anyway route, additional
							ConstantParameter(kind=ParameterKind.CONSTANT, value='-')
						]
					),
					alias=f'column_{column_index}'
				)
			elif measure_on == InspectMeasureOn.OTHER:
				bucket = self.to_category_segments_bucket(bucket)
				segments = ArrayHelper(bucket.segments) \
					.filter(lambda x: x.value is not None and len(x.value) != 0).to_list()
				if len(segments) == 0:
					raise IndicatorKernelException('Category segments not declared.')
				anyway_segment: CategorySegment = ArrayHelper(segments) \
					.find(lambda x: len(x.value) == 1 and x.value[0] == OtherCategorySegmentValue)
				if anyway_segment is not None:
					conditional_routes = ArrayHelper(segments).filter(lambda x: x != anyway_segment).to_list()
					anyway_route = ConstantParameter(kind=ParameterKind.CONSTANT, value=anyway_segment.name)
				else:
					conditional_routes = segments
					anyway_route = ConstantParameter(kind=ParameterKind.CONSTANT, value='-')

				column = SubjectDatasetColumn(
					columnId=str(column_index),
					parameter=ComputedParameter(
						kind=ParameterKind.COMPUTED, type=ParameterComputeType.CASE_THEN,
						parameters=[
							*ArrayHelper(conditional_routes).map(
								lambda x: self.to_category_case_route(x, measure_on_factor)).to_list(),
							anyway_route
						]
					),
					alias=f'column_{column_index}'
				)
			else:
				raise IndicatorKernelException(f'Measure[{measure_on}] is not supported.')
		return column, column_index, column_index + 1
def find_source_parameter(topic: Topic,
                          factor_name: str) -> TopicFactorParameter:
    return TopicFactorParameter(kind=ParameterKind.TOPIC,
                                topicId=topic.topicId,
                                factorId=find_factor(topic,
                                                     factor_name).factorId)
 def build_topic_factor_parameter(self, topic_id: TopicId,
                                  factor_id: FactorId) -> Parameter:
     return TopicFactorParameter(kind=ParameterKind.TOPIC,
                                 topicId=topic_id,
                                 factorId=factor_id)
Example #16
0
	def fake_time_range_to_report(self) -> Optional[ParameterJoint]:
		time_range_factor_id = self.inspection.timeRangeFactorId
		if is_blank(time_range_factor_id):
			return None
		time_range_column = self.find_column(time_range_factor_id, lambda: 'Time range factor not declared.')
		time_ranges = ArrayHelper(self.inspection.timeRanges) \
			.filter(lambda x: x is not None and x.value is not None).to_list()
		if len(time_ranges) == 0:
			# no ranges given
			return None

		operator = ParameterExpressionOperator.EQUALS if len(time_ranges) == 1 else ParameterExpressionOperator.IN
		right = time_ranges[0].value if len(time_ranges) == 1 \
			else ArrayHelper(time_ranges).map(lambda x: x.value).join(',')
		time_range_measure = self.inspection.timeRangeMeasure
		if isinstance(time_range_column.parameter, TopicFactorParameter):
			topic_id = time_range_column.parameter.topicId
			if is_blank(topic_id):
				raise IndicatorKernelException(f'Topic not declared for time range factor[id={time_range_factor_id}].')
			topic = get_topic_service(self.principalService).find_by_id(topic_id)
			if topic is None:
				raise IndicatorKernelException(f'Topic[id={topic_id}] not found.')
			factor_id = time_range_column.parameter.factorId
			if is_blank(topic_id):
				raise IndicatorKernelException(f'Factor not declared for time range factor[id={time_range_factor_id}].')
			factor = ArrayHelper(topic.factors).find(lambda x: x.factorId == factor_id)
			if factor is None:
				raise IndicatorKernelException(f'Factor[id={factor_id}] not found on topic[id={topic_id}].')
			if self.has_year_or_month(factor):
				if time_range_measure == MeasureMethod.YEAR:
					compute_type = ParameterComputeType.YEAR_OF
				elif time_range_measure == MeasureMethod.MONTH:
					compute_type = ParameterComputeType.MONTH_OF
				else:
					raise IndicatorKernelException(
						f'Measure method[{time_range_measure}] for factor type[{factor.type}] is not supported.')
				joint = ParameterJoint(
					jointType=ParameterJointType.AND,
					filters=[
						ParameterExpression(
							left=ComputedParameter(
								kind=ParameterKind.COMPUTED,
								type=compute_type,
								parameters=[
									TopicFactorParameter(
										kind=ParameterKind.TOPIC,
										topicId='1', factorId=time_range_factor_id)
								]
							),
							operator=operator,
							right=ConstantParameter(kind=ParameterKind.CONSTANT, value=str(right))
						)
					]
				)
			else:
				joint = ParameterJoint(
					jointType=ParameterJointType.AND,
					filters=[
						ParameterExpression(
							left=TopicFactorParameter(
								kind=ParameterKind.TOPIC, topicId='1', factorId=time_range_factor_id),
							operator=operator,
							right=ConstantParameter(kind=ParameterKind.CONSTANT, value=str(right))
						)
					]
				)
		else:
			joint = ParameterJoint(
				jointType=ParameterJointType.AND,
				filters=[
					ParameterExpression(
						left=TopicFactorParameter(
							kind=ParameterKind.TOPIC, topicId='1', factorId=time_range_factor_id),
						operator=operator,
						right=ConstantParameter(kind=ParameterKind.CONSTANT, value=str(right))
					)
				]
			)
		return joint
Example #17
0
    def test_single_topic(self):
        self.prepare_data()

        subject = Subject(dataset=SubjectDataset(columns=[
            SubjectDatasetColumn(
                columnId='1',
                parameter=ComputedParameter(
                    kind=ParameterKind.COMPUTED,
                    type=ParameterComputeType.ADD,
                    parameters=[
                        TopicFactorParameter(kind=ParameterKind.TOPIC,
                                             topicId='1',
                                             factorId='1'),
                        ConstantParameter(kind=ParameterKind.CONSTANT,
                                          value='2')
                    ]),
                alias='Column1',
                arithmetic=SubjectColumnArithmetic.SUMMARY),
            SubjectDatasetColumn(
                columnId='2',
                parameter=TopicFactorParameter(
                    kind=ParameterKind.TOPIC, topicId='1', factorId='1'),
                alias='Column2'),
            SubjectDatasetColumn(columnId='3',
                                 parameter=ConstantParameter(
                                     kind=ParameterKind.CONSTANT,
                                     value='{&now}'),
                                 alias='Column3'),
            SubjectDatasetColumn(columnId='4',
                                 parameter=ConstantParameter(
                                     kind=ParameterKind.CONSTANT,
                                     value='HELLO WORLD!'),
                                 alias='Column4'),
            SubjectDatasetColumn(
                columnId='5',
                parameter=ComputedParameter(
                    kind=ParameterKind.COMPUTED,
                    type=ParameterComputeType.ADD,
                    parameters=[
                        ConstantParameter(kind=ParameterKind.CONSTANT,
                                          value='201'),
                        ConstantParameter(kind=ParameterKind.CONSTANT,
                                          value='102')
                    ]),
                alias='Column5'),
            SubjectDatasetColumn(columnId='6',
                                 parameter=ComputedParameter(
                                     kind=ParameterKind.COMPUTED,
                                     type=ParameterComputeType.YEAR_OF,
                                     parameters=[
                                         ConstantParameter(
                                             kind=ParameterKind.CONSTANT,
                                             value='2022/03/03'),
                                     ]),
                                 alias='Column6'),
            SubjectDatasetColumn(
                columnId='7',
                parameter=TopicFactorParameter(
                    kind=ParameterKind.TOPIC, topicId='1', factorId='2'),
                alias='Column7')
        ]),
                          connectId='1',
                          userId='1',
                          tenantId='1')
        subject_data_service = SubjectDataService(
            subject, create_fake_principal_service())
        page = subject_data_service.page(Pageable(pageNumber=1, pageSize=100))
        print(page)

        report = Report(
            indicators=[
                ReportIndicator(columnId='1',
                                name='sum_value',
                                arithmetic=ReportIndicatorArithmetic.SUMMARY)
            ],
            dimensions=[ReportDimension(columnId='7', name='enabled')],
            filters=ParameterJoint(
                jointType=ParameterJointType.AND,
                filters=[
                    ParameterExpression(
                        left=TopicFactorParameter(kind=ParameterKind.TOPIC,
                                                  factorId='7'),
                        operator=ParameterExpressionOperator.EQUALS,
                        right=ConstantParameter(kind=ParameterKind.CONSTANT,
                                                value='true'))
                ]))
        report_data_service = ReportDataService(
            subject, report, create_fake_principal_service(), False)
        data = report_data_service.find()
        print(data)