def image_recognition(request):
    query = request.GET.get("q")
    args = {}
    if query:
        instance = vr(api_key='119030bac8e38e1721e61e0f6a295e18e5d9ecdf',
                      version='2016-05-20')
        img = instance.classify(images_url=query)
        args = {'images': img['images'][0]['classifiers'][0]['classes']}
    return render(request, 'watson/image_recognition.html', args)
Example #2
0
def url_recognizer():
    wvr = vr(
        version="2018-03-19",
        iam_apikey="F_-o_C5ie1HKGU750akv3SsbDwy5dI2yigLVl0TSZVOi",
    )
    img = wvr.classify(
        url=
        "https://s2.glbimg.com/3auOxS3cG2mc_H5jFXDpxC7ol-w=/e.glbimg.com/og/ed/f/original/2016/09/12/dr-alan-turing-2956483.jpg"
    )
    return print(img)
Example #3
0
# Visual Recognition with IBM Watson - Image Classification
# Requirements 1: IBM Bluemix Account (free) - https://console.ng.bluemix.net/
# Requirements 2: watson_developer_cloud module python module
# Once registered, login to your account, go to Services -> Watson and create a Visual Recognition instance
# Once you have your VR instance created, you will use its API credentials in your python code

from watson_developer_cloud import VisualRecognitionV3 as vr

# creating a VR instance

instance = vr(api_key='paste your api _key here', version='2016-05-20')

# select an image (local or url). Copy its location (path or url):

img = instance.classify(images_url='url-path-to-img.jpg')

# you can run this code in the interpreter. If you request >>> img it will output a json formatted result
# getting down the json tree with the following input will display what Watson sees in the image, and the confidence level

# >>> img['images'][0]['classifiers'][0]['classes']

# for a better view of the results, you can use pprint

import pprint
pprint.pprint(img['images'][0]['classifiers'][0]['classes'])

# I posted a demo of this here: http://bit.ly/2gZg4D9
# If you need help with Watson and Visual Recognition, send me a message.
# Visual Recognition with IBM Watson - Image Classification
# Requirements 1: IBM Bluemix Account (free) - https://console.ng.bluemix.net/
# Requirements 2: watson_developer_cloud module python module
# Once registered, login to your account, go to Services -> Watson and create a Visual Recognition instance
# Once you have your VR instance created, you will use its API credentials in your python code

from watson_developer_cloud import VisualRecognitionV3 as vr

# creating a VR instance

instance = vr(api_key='143a027a9be556e0c04d17cc87df0e84a6f838b4',
              version='2016-05-20')

# select an image (local or url). Copy its location (path or url):

img = instance.classify(
    images_url=
    'http://ichef.bbci.co.uk/wwfeatures/wm/live/624_351/images/live/p0/3d/tk/p03dtkw2.jpg'
)

# you can run this code in the interpreter. If you request >>> img it will output a json formatted result
# getting down the json tree with the following input will display what Watson sees in the image, and the confidence level

# >>> img['images'][0]['classifiers'][0]['classes']

# for a better view of the results, you can use pprint

import pprint

pprint.pprint(img['images'][0]['classifiers'][0]['classes'])
Example #5
0
 def __init__(self, name=None, device=None, context=None):
     App.__init__(self, name, device, context)
     self.engine = vr('2018-07-10',
                      iam_apikey=self.device.get_encrypted_field('key'))
     self.jString = ''
# -*- coding: utf-8 -*-

import os
from os.path import join
from watson_developer_cloud import VisualRecognitionV3 as vr
import numpy as np

vr_instance = vr(version='2016-05-20',
                 api_key='ca62a5844926baf007e5558a1d4c236dbccee838')


def find_images(walk_dir):
    '''
    Find images of different labels (corresponding to different subfolders) according to parent folder 'walk_dir'.
    '''

    names = []
    fnames = []
    str_labels = []
    for root, subdirs, files in os.walk(walk_dir):
        for filename in files:
            if filename.endswith(('.jpg', '.png', '.JPEG')):
                full_fname = join(root, filename)
                names.append(filename)
                fnames.append(full_fname)
                str_labels.append(root)

    [u, labels] = np.unique(str_labels, return_inverse=True)
    return np.array(fnames), np.array(labels)

Example #7
0
#!/usr/bin/env python3

from watson_developer_cloud import VisualRecognitionV3 as vr
import json
import os
import sys

try:
    devKey = os.environ['IBM_DEV_KEY']
except:
    exit("IBM_DEV_KEY environment variable needs to be set")

instance = vr(api_key=devKey, version='2017-01-24')

elvisTestDir = '/Users/janae/data/elvisPMs_last100'
#testPMs = ['Tony_Blair', 'Gordon_Brown', 'David_Cameron']
testPMs = ['David_Cameron']
# PM found, PM not found, no face found, wrong PM found
pmRes = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
nameUnknown = 'unknown'

for i in range(len(testPMs)):
    testperson = testPMs[i]
    print(os.path.join(elvisTestDir, testperson))
    allImg = [
        os.path.join(elvisTestDir, testperson, f)
        for f in os.listdir(os.path.join(elvisTestDir, testperson))
        if os.path.isfile(os.path.join(elvisTestDir, testperson, f))
        and f.endswith(".jpg")
    ]
    for imgFile in allImg:
Example #8
0
print 'metadata: ', folder_metadata

#download first image file
print " "
filelocation = raw_input("Enter file location: (example: /Home/13-15-00.jpg) ") 
f, metadata = client.get_file_and_metadata(filelocation)
print metadata
im = Image.open(f)
im.show()
print client.share(filelocation, short_url = False)
fileurl = client.share(filelocation, short_url = False)
print fileurl.get('url')
lasturl = fileurl.get('url')

#examine first image file
instance = vr(api_key='put your watson ibm api key here', version='2016-05-20')

img = instance.classify(images_url = lasturl)

a = 0
for things in img['images'][0]['classifiers'][0]['classes']:
    if((things['score']*100) > a):
        a = things['score']*100
        first = things['class']
    print('\n There is a ' + str(things['score']*100) + ' percent chance the image contains: '+ things['class'])

print first

#second image file retrieved
filelocation2 = raw_input("Enter file location to compare to: (example: /Home/13-15-00.jpg) ") 
c, metadata = client.get_file_and_metadata(filelocation2)
Example #9
0
from watson_developer_cloud import VisualRecognitionV3 as vr
import webbrowser
import time

# creating a VR instance

instance = vr(api_key='ff644e192cbf2fcd509165d85a7b053f360ca6a1', version='2016-05-20')

# select an image (local or url). Copy its location (path or url):

img = instance.classify(images_url='http://i.dailymail.co.uk/i/pix/2011/12/23/article-2077964-0CAA9E3A000005DC-263_468x319.jpg')

# you can run this code in the interpreter. If you request >>> img it will output a json formatted result
# getting down the json tree with the following input will display what Watson sees in the image, and the confidence level

# >>> img['images'][0]['classifiers'][0]['classes']

# for a better view of the results, you can use pprint
print "The output given by Watson \n"
print(img)
print("--------------------------------------------------------------------------------------------------------------------------------------------------------- \n")

num_of_results= len(img['images'][0]['classifiers'][0]['classes'])
print "The output in a readable user-friendly way \n"
print("This image contains the following:")

for x in range(0, num_of_results):
   print img['images'][0]['classifiers'][0]['classes'][x]['class'],'with confidence level:' , img['images'][0]['classifiers'][0]['classes'][x]['score']

print("--------------------------------------------------------------------------------------------------------------------------------------------------------- \n")
Example #10
0
 def __init__(self, name, device, context):
     App.__init__(self, name, device, context)
     self.engine = vr('2016-05-20',
                      api_key=self.device.get_encrypted_field('key'))
Example #11
0
File: reco.py Project: rleme/robo
from watson_developer_cloud import VisualRecognitionV3 as vr
import pprint

api_key = input("Enter you api key : ")
instance = vr(api_key=api_key, version='2016-05-20')


def visualRecog(self):

    images_url = input("Enter the url of the image :\n")
    img = self.classify(images_url=images_url)
    data = img['images'][0]['classifiers'][0]['classes']
    pprint.pprint(data)


def textRecog(self):

    images_url = input("Enter the url of the image :\n")
    img = self.recognize_text(images_url=images_url)
    print(img['images'][0]['text'])


def facialRecog(self):

    images_url = input("Enter the url of the image :\n")
    img = self.detect_faces(images_url=images_url)
    for identity in img['images'][0]['faces']:
        if ('identity' in identity):
            print(
                "Name : " + identity['identity']['name'] + "\n",
                "Gender : " + identity['gender']['gender'] + "\n",
Example #12
0
''' THE MAIN PYTHON CODE TO DRIVE THE RASPBERRY PI- IBM BLUEMIX DUO'''
#importing necessary modules
import json
import sys
from os.path import join, dirname
from os import environ
from watson_developer_cloud import VisualRecognitionV3 as vr
from pprint import pprint

#instantiating
visual_recognition = vr(vr.latest_version,
                        api_key='0234986d7c042310503a1e2477f1f8579a190040')
with open(
        'C:\Users\Pritesh J Shah\Desktop\VisualRecognition\leaf_negative_examples\leaf69.jpg',
        'rb') as image_file:
    a = json.dumps(visual_recognition.classify(
        images_file=image_file,
        threshold=0,
        classifier_ids=['PestControl_834594187']),
                   indent=2)  #retrieving the JSON object
    js = json.loads(a)  #parsing
    a = js['images'][0]['classifiers'][0]['classes'][0]['score']  #parsing
    b = js['images'][0]['classifiers'][0]['classes'][1]['score']  #parsing
    if (a > b):
        print(js['images'][0]['classifiers'][0]['classes'][0]['class'])
    else:  #checking for pest/not pest
        print(js['images'][0]['classifiers'][0]['classes'][1]['class'])
#at this point we get whether the image contains pests or not.
Example #13
0
 def __init__(self, name=None, device=None):
     App.__init__(self, name, device)
     self.engine = vr('2016-05-20',
                      api_key=self.get_device().get_password())
Example #14
0
def initiliazeWatson():
    ibmWatson = vr(iam_apikey='qqBbMGQ4qmRaPBLbGENUrJMtt-Xy3PvxQk_sptgYDCzJ',version='2016-05-20')
    return ibmWatson