Example #1
0
def main(_):
    utils.load(FLAGS.config_path)
    global_step = tf.train.get_or_create_global_step()
    inputs = tf.placeholder(tf.float32, [1, None, utils.Data.num_channel])
    wavenet.bulid_wavenet(inputs,
                          len(utils.Data.vocabulary),
                          is_training=False)
    restore = utils.restore_from_pretrain(FLAGS.input_dir)
    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        sess.run(restore)
        saver.save(sess, FLAGS.output_path)
    shutil.copy(FLAGS.config_path, FLAGS.output_path + '.json')
Example #2
0
def main(_):
    inputs = tf.placeholder(shape=[None, None, 20], dtype=tf.float32)
    labels = tf.placeholder(shape=[None, None], dtype=tf.int64)
    is_training = tf.placeholder(shape=[], dtype=tf.bool)
    seq_len = tf.reduce_sum(tf.cast(
        tf.not_equal(tf.reduce_sum(inputs, axis=2), 0.), tf.int32),
                            axis=1)
    global_step = tf.train.get_or_create_global_step()
    logits = wavenet.bulid_wavenet(inputs, len(utils.class_names), is_training)
    loss = tf.nn.ctc_loss(labels=labels,
                          inputs=logits,
                          sequence_length=seq_len)
    outputs, _ = tf.nn.ctc_beam_search_decoder(tf.transpose(logits,
                                                            perm=[1, 0, 2]),
                                               seq_len,
                                               merge_repeated=False)
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
        optimize = tf.train.AdamOptimizer(learning_rate=0.01).minimize(
            loss=loss, global_step=global_step)
    restore_op = utils.restore_from_pretrain(FLAGS.pretrain_dir)
    save = tf.train.Saver()
    train_dattaset = dataset.create(FLAGS.train_dir)
    test_dataset = dataset.create(FLAGS.test_dir)
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        sess.run(restore_op)
        if len(os.listdir(FLAGS.checkpoint_dir)) > 0:
            save.restore(sess,
                         tf.train.latest_checkpoint(FLAGS.checkpoint_dir))
def main(_):
    if not os.path.exists(FLAGS.ckpt_path + '.index'):
        glog.error('%s was not found.' % FLAGS.ckpt_path)
        return -1

    utils.load(FLAGS.ckpt_path + '.json')
    vocabulary = tf.constant(utils.Data.vocabulary)
    inputs = tf.placeholder(tf.float32, [1, None, utils.Data.num_channel])
    sequence_length = tf.placeholder(tf.int32, [None])

    logits = wavenet.bulid_wavenet(inputs,
                                   len(utils.Data.vocabulary),
                                   is_training=False)
    decodes, _ = tf.nn.ctc_beam_search_decoder(tf.transpose(logits,
                                                            perm=[1, 0, 2]),
                                               sequence_length,
                                               merge_repeated=False)
    outputs = tf.gather(vocabulary, tf.sparse.to_dense(decodes[0]))
    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver.restore(sess, FLAGS.ckpt_path)
        wave = utils.read_wave(FLAGS.input_path)
        output = utils.cvt_np2string(
            sess.run(outputs,
                     feed_dict={
                         inputs: [wave],
                         sequence_length: [wave.shape[0]]
                     }))[0]
        glog.info('%s: %s.', FLAGS.input_path, output)
    return 0
Example #4
0
def main(_):
  class_names = tf.constant(utils.Data.class_names)
  inputs = tf.placeholder(tf.float32, [1, None, utils.Data.channels])
  seq_len = tf.reduce_sum(tf.cast(tf.not_equal(tf.reduce_sum(inputs, axis=2), 0.), tf.int32), axis=1)

  logits = wavenet.bulid_wavenet(inputs, len(utils.Data.class_names), is_training=False)
  decodes, _ = tf.nn.ctc_beam_search_decoder(tf.transpose(logits, perm=[1, 0, 2]), seq_len, merge_repeated=False)
  outputs = tf.sparse.to_dense(decodes[0]) + 1
  outputs = tf.gather(class_names, outputs)
  restore = utils.restore_from_pretrain(FLAGS.pretrain_dir)
  save = tf.train.Saver()
  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    sess.run(restore)
    if os.path.exists(FLAGS.checkpoint_dir) and len(os.listdir(FLAGS.checkpoint_dir)) > 0:
      save.restore(sess, tf.train.latest_checkpoint(FLAGS.checkpoint_dir))
    output = utils.cvt_np2string(sess.run(outputs, feed_dict={inputs: [utils.read_wave(FLAGS.input_path)]}))[0]
    glog.info('%s: %s.', FLAGS.input_path, output)
Example #5
0
def main(_):
    os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.device)
    utils.load(FLAGS.config_path)
    global_step = tf.train.get_or_create_global_step()
    train_dataset = dataset.create(FLAGS.dataset_path,
                                   FLAGS.batch_size,
                                   repeat=True)

    # bug tensorflow!!!  the  train_dataset[0].shape[0] != FLAGS.batch_size once in a while
    # waves = tf.reshape(tf.sparse.to_dense(train_dataset[0]), shape=[FLAGS.batch_size, -1, utils.Data.num_channel])
    waves = tf.sparse.to_dense(train_dataset[0])
    waves = tf.reshape(waves, [tf.shape(waves)[0], -1, utils.Data.num_channel])

    labels = tf.cast(train_dataset[1], tf.int32)
    sequence_length = tf.cast(train_dataset[2], tf.int32)
    logits = wavenet.bulid_wavenet(waves,
                                   len(utils.Data.vocabulary),
                                   is_training=True)
    loss = tf.reduce_mean(
        tf.nn.ctc_loss(labels, logits, sequence_length, time_major=False))

    vocabulary = tf.constant(utils.Data.vocabulary)
    decodes, _ = tf.nn.ctc_beam_search_decoder(tf.transpose(logits, [1, 0, 2]),
                                               sequence_length,
                                               merge_repeated=False)
    outputs = tf.gather(vocabulary, tf.sparse.to_dense(decodes[0]))
    labels = tf.gather(vocabulary, tf.sparse.to_dense(labels))

    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
        optimize = tf.train.AdamOptimizer(
            learning_rate=FLAGS.learning_rate).minimize(
                loss=loss, global_step=global_step)

    save = tf.train.Saver(max_to_keep=1000)
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        sess.run(tf.global_variables_initializer())
        sess.run(train_dataset[-1])
        # if os.path.exists(FLAGS.pretrain_dir) and len(os.listdir(FLAGS.pretrain_dir)) > 0:
        #   save.restore(sess, tf.train.latest_checkpoint(FLAGS.pretrain_dir))
        ckpt_dir = os.path.split(FLAGS.ckpt_path)[0]
        if not os.path.exists(ckpt_dir):
            os.makedirs(ckpt_dir)
        if len(os.listdir(ckpt_dir)) > 0:
            save.restore(sess, tf.train.latest_checkpoint(ckpt_dir))

        losses, tps, preds, poses = 0, 0, 0, 0
        while True:
            gp, ll, uid, ot, ls, _ = sess.run(
                (global_step, labels, train_dataset[3], outputs, loss,
                 optimize))
            tp, pred, pos = utils.evalutes(utils.cvt_np2string(ot),
                                           utils.cvt_np2string(ll))
            tps += tp
            losses += ls
            preds += pred
            poses += pos
            if gp % FLAGS.display == 0:
                glog.info(
                    "Step %d: loss=%f, tp=%d, pos=%d, pred=%d, f1=%f." %
                    (gp, losses if gp == 0 else
                     (losses / FLAGS.display), tps, preds, poses, 2 * tps /
                     (preds + poses + 1e-10)))
                losses, tps, preds, poses = 0, 0, 0, 0
            if (gp + 1) % FLAGS.snapshot == 0 and gp != 0:
                save.save(sess, FLAGS.ckpt_path, global_step=global_step)
def main(_):
    utils.load(FLAGS.config_path)
    os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.device)
    # with tf.device(FLAGS.device):
    test_dataset = dataset.create(FLAGS.dataset_path,
                                  repeat=False,
                                  batch_size=1)
    waves = tf.reshape(tf.sparse.to_dense(test_dataset[0]),
                       shape=[1, -1, utils.Data.num_channel])
    labels = tf.sparse.to_dense(test_dataset[1])
    sequence_length = tf.cast(test_dataset[2], tf.int32)
    vocabulary = tf.constant(utils.Data.vocabulary)
    labels = tf.gather(vocabulary, labels)
    logits = wavenet.bulid_wavenet(waves, len(utils.Data.vocabulary))
    decodes, _ = tf.nn.ctc_beam_search_decoder(tf.transpose(logits,
                                                            perm=[1, 0, 2]),
                                               sequence_length,
                                               merge_repeated=False)
    outputs = tf.gather(vocabulary, tf.sparse.to_dense(decodes[0]))
    save = tf.train.Saver()

    evalutes = {}
    if os.path.exists(FLAGS.ckpt_dir + '/evalute.json'):
        evalutes = json.load(
            open(FLAGS.ckpt_dir + '/evalute.json', encoding='utf-8'))

    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        status = 0
        while True:
            filepaths = glob.glob(FLAGS.ckpt_dir + '/*.index')
            filepaths.sort()
            filepaths.reverse()
            filepath = filepaths[0]
            max_uid = 0
            for filepath in filepaths:
                model_path = os.path.splitext(filepath)[0]
                uid = os.path.split(model_path)[-1]
                if max_uid <= int(uid.split("-")[1]):
                    max_uid = int(uid.split("-")[1])
                    max_uid_full = uid
                    max_model_path = model_path
                    # print(max_uid)
            status = 2
            sess.run(tf.global_variables_initializer())
            sess.run(test_dataset[-1])
            save.restore(sess, max_model_path)
            #   sa print(tf.train.latest_checkpoint(FLAGS.ckpt_dir))
            #  ve.restore(sess, tf.train.latest_checkpoint(FLAGS.ckpt_dir))
            evalutes[max_uid_full] = {}
            tps, preds, poses, count = 0, 0, 0, 0
            while True:
                try:
                    count += 1
                    y, y_ = sess.run((labels, outputs))
                    y = utils.cvt_np2string(y)
                    y_ = utils.cvt_np2string(y_)
                    tp, pred, pos = utils.evalutes(y_, y)
                    tps += tp
                    preds += pred
                    poses += pos
                #  if count % 1000 == 0:
                #    glog.info('processed %d: tp=%d, pred=%d, pos=%d.' % (count, tps, preds, poses))
                except:
                    #  if count % 1000 != 0:
                    #    glog.info('processed %d: tp=%d, pred=%d, pos=%d.' % (count, tps, preds, poses))
                    break

            evalutes[max_uid_full]['tp'] = tps
            evalutes[max_uid_full]['pred'] = preds
            evalutes[max_uid_full]['pos'] = poses
            evalutes[max_uid_full]['f1'] = 2 * tps / (preds + poses + 1e-20)
            json.dump(
                evalutes,
                open(FLAGS.ckpt_dir + '/evalute.json',
                     mode='w',
                     encoding='utf-8'))
            evalute = evalutes[max_uid_full]
            glog.info('Evalute %s: tp=%d, pred=%d, pos=%d, f1=%f.' %
                      (max_uid_full, evalute['tp'], evalute['pred'],
                       evalute['pos'], evalute['f1']))
            if status == 1:
                time.sleep(60)
            status = 1