# %% Crop # ============================================================================= idx4crop = [0, -1, 0, -1] [colorlimit, cmap] = wpu.plot_slide_colorbar( img, title='SELECT COLOR SCALE,\n' + 'Raw Image, No Crop', xlabel=r'x [$\mu m$ ]', ylabel=r'y [$\mu m$ ]', extent=wpu.extent_func(img, pixelSize) * 1e6) idx4crop = wpu.graphical_roi_idx(img, verbose=True, kargs4graph={ 'cmap': cmap, 'vmin': colorlimit[0], 'vmax': colorlimit[1] }) wpu.print_blue("MESSAGE: idx for cropping") wpu.print_blue(idx4crop) img = wpu.crop_matrix_at_indexes(img, idx4crop) # ============================================================================= # %% Dark indexes # ============================================================================= darkRegionSelctionFlag = easyqt.get_yes_or_no( 'Do you want to select ' + 'region for dark calculation?\n' +
wavelength = hc/phenergy kwave = 2*np.pi/wavelength # ============================================================================= # %% Crop # ============================================================================= #image = np.rot90(image) # rotate images, good for sanity checks #image_ref = np.rot90(image_ref) kb_input = input('\nGraphic Crop? [N/y] : ') if kb_input.lower() == 'y': # Graphical Crop idx = wpu.graphical_roi_idx(image, verbose=True) print('New idx:') print(idx) ini_pars['crop'] = str('{0}, {1}, {2}, {3}'.format(idx[0], idx[1], idx[2], idx[3])) with open(inifname, 'w') as configfile: # update values in the ini file config.write(configfile) image = wpu.crop_matrix_at_indexes(image, idx) image_ref = wpu.crop_matrix_at_indexes(image_ref, idx) # %% # ============================================================================= # Displacement
stride = 1 pixelsizeImg = stride * pixelsizeImg sx_raw = np.array(f['displacement/displacement_x'])[::stride, ::stride] sy_raw = np.array(f['displacement/displacement_y'])[::stride, ::stride] error_raw = np.array(f['displacement/error'])[::stride, ::stride] xVec_raw = np.array(f['displacement/xvec'])[::stride] yVec_raw = np.array(f['displacement/yvec'])[::stride] #============================================================================== # %% Crop #============================================================================== idx4crop = wpu.graphical_roi_idx(np.sqrt(sx_raw**2 + sy_raw**2), verbose=True) sx = wpu.crop_matrix_at_indexes(sx_raw, idx4crop) sy = wpu.crop_matrix_at_indexes(sy_raw, idx4crop) error = wpu.crop_matrix_at_indexes(error_raw, idx4crop) xVec = wpu.realcoordvec(sx.shape[1], pixelsizeImg) yVec = wpu.realcoordvec(sx.shape[0], pixelsizeImg) xmatrix, ymatrix = np.meshgrid(xVec, yVec) #============================================================================== # %% Calculations of physical quantities #============================================================================== totalS = np.sqrt(sx**2 + sy**2)
else: wpu.print_red('ERROR: Wrong file type!') exit(-1) thickness -= np.nanmin(thickness) saveFigFlag = True # %% Crop metrology_flag = False if metrology_flag: thickness_temp = np.copy(thickness) thickness_temp[np.isnan(thickness)] = 0.0 idx4crop = wpu.graphical_roi_idx(thickness_temp * 1e6, verbose=True) thickness = wpu.crop_matrix_at_indexes(thickness, idx4crop) xx = wpu.crop_matrix_at_indexes(xx, idx4crop) yy = wpu.crop_matrix_at_indexes(yy, idx4crop) stride = thickness.shape[0] // 125 if gui_mode: wpu.plot_profile(xx[::stride, ::stride] * 1e6, yy[::stride, ::stride] * 1e6, thickness[::stride, ::stride] * 1e6, xlabel=r'$x$ [$\mu m$ ]', ylabel=r'$y$ [$\mu m$ ]',
def main_single_gr_Talbot(img, imgRef, phenergy, pixelsize, distDet2sample, period_harm, saveFileSuf, unwrapFlag=True, plotFlag=True, saveFigFlag=False): global inifname # name of .ini file [period_harm_Vert, period_harm_Hor] = period_harm # img, imgRef = wpu.align_two_images(img, imgRef) # Crop img_size_o = np.shape(img) # take index from ini file idx4crop = list(map(int, (wpu.get_from_ini_file(inifname, 'Parameters', 'Crop').split(',')))) # Plot Real Image wiht default crop tmpImage = wpu.crop_matrix_at_indexes(img, idx4crop) plt.figure() plt.imshow(tmpImage, cmap='viridis', extent=wpu.extent_func(tmpImage, pixelsize)*1e6) plt.xlabel(r'$[\mu m]$') plt.ylabel(r'$[\mu m]$') plt.colorbar() plt.title('Raw Image with initial Crop', fontsize=18, weight='bold') plt.pause(.1) # ask if the crop need to be changed newCrop = easyqt.get_yes_or_no('New Crop?') if saveFigFlag and not newCrop: wpu.save_figs_with_idx(saveFileSuf + '_Talbot_image') plt.close(plt.gcf()) if newCrop: [colorlimit, cmap] = wpu.plot_slide_colorbar(img, title='SELECT COLOR SCALE,\n' + 'Raw Image, No Crop', xlabel=r'x [$\mu m$ ]', ylabel=r'y [$\mu m$ ]', extent=wpu.extent_func(img, pixelsize)*1e6) idx4crop = wpu.graphical_roi_idx(img, verbose=True, kargs4graph={'cmap': cmap, 'vmin': colorlimit[0], 'vmax': colorlimit[1]}) wpu.set_at_ini_file(inifname, 'Parameters', 'Crop', '{}, {}, {}, {}'.format(idx4crop[0], idx4crop[1], idx4crop[2], idx4crop[3])) img = wpu.crop_matrix_at_indexes(img, idx4crop) # Plot Real Image AFTER crop plt.imshow(img, cmap='viridis', extent=wpu.extent_func(img, pixelsize)*1e6) plt.xlabel(r'$[\mu m]$') plt.ylabel(r'$[\mu m]$') plt.colorbar() plt.title('Raw Image with New Crop', fontsize=18, weight='bold') if saveFigFlag: wpu.save_figs_with_idx(saveFileSuf + '_Talbot_image') plt.show(block=True) else: img = tmpImage imgRef = wpu.crop_matrix_at_indexes(imgRef, idx4crop) # calculate harmonic position after crop period_harm_Vert = int(period_harm_Vert*(idx4crop[1] - idx4crop[0]) / img_size_o[0]) period_harm_Hor = int(period_harm_Hor*(idx4crop[3] - idx4crop[2]) / img_size_o[1]) # Obtain harmonic periods from images (period_harm_Vert, _) = wgi.exp_harm_period(img, [period_harm_Vert, period_harm_Hor], harmonic_ij=['1', '0'], searchRegion=20, isFFT=False, verbose=True) (_, period_harm_Horz) = wgi.exp_harm_period(img, [period_harm_Vert, period_harm_Hor], harmonic_ij=['0', '1'], searchRegion=20, isFFT=False, verbose=True) # Calculate everything harmPeriod = [period_harm_Vert, period_harm_Hor] [int00, int01, int10, darkField01, darkField10, phaseFFT_01, phaseFFT_10] = wgi.single_2Dgrating_analyses(img, imgRef, harmonicPeriod=harmPeriod, plotFlag=plotFlag, unwrapFlag=unwrapFlag, verbose=True) virtual_pixelsize = [0, 0] virtual_pixelsize[0] = pixelsize[0]*img.shape[0]/int00.shape[0] virtual_pixelsize[1] = pixelsize[1]*img.shape[1]/int00.shape[1] diffPhase01 = phaseFFT_01*virtual_pixelsize[1]/distDet2sample/hc*phenergy diffPhase10 = phaseFFT_10*virtual_pixelsize[0]/distDet2sample/hc*phenergy return [int00, int01, int10, darkField01, darkField10, diffPhase01, diffPhase10, virtual_pixelsize]
# %% sx_raw = np.array(f['displacement/displacement_x']) sy_raw = np.array(f['displacement/displacement_y']) error_raw = np.array(f['displacement/error']) xVec_raw = np.array(f['displacement/xvec']) yVec_raw = np.array(f['displacement/yvec']) #============================================================================== # %% Crop #============================================================================== idx4crop = wpu.graphical_roi_idx(np.sqrt(sx_raw**2 + sy_raw**2), verbose=True) sx = wpu.crop_matrix_at_indexes(sx_raw, idx4crop) sy = wpu.crop_matrix_at_indexes(sy_raw, idx4crop) error = wpu.crop_matrix_at_indexes(error_raw, idx4crop) xVec = wpu.realcoordvec(sx.shape[1], pixelsizeImg) yVec = wpu.realcoordvec(sx.shape[0], pixelsizeImg) xmatrix, ymatrix = np.meshgrid(xVec, yVec)
else: img_ref = dxchange.read_tiff(samplefileName) if easyqt.get_yes_or_no('New Crop?'): [colorlimit, cmap] = wpu.plot_slide_colorbar( img_ref, title='SELECT COLOR SCALE,\n' + 'Raw Image, No Crop', xlabel=r'x [$\mu m$ ]', ylabel=r'y [$\mu m$ ]') idxROI = wpu.graphical_roi_idx(img_ref, kargs4graph={ 'cmap': cmap, 'vmin': colorlimit[0], 'vmax': colorlimit[1] }) wpu.set_at_ini_file( inifname, 'Parameters', 'Crop', '{}, {}, {}, {}'.format(idxROI[0], idxROI[1], idxROI[2], idxROI[3])) else: idxROI = idx4crop _, allShifts = wpu.align_many_imgs(samplefileName, idxROI=idxROI, option=option.lower(), fixRef=fixRef, displayPlots=displayPlots)
# ============================================================================= # %% Crop # ============================================================================= #image = np.rot90(image) # rotate images, good for sanity checks #image_ref = np.rot90(image_ref) kb_input = input('\nGraphic Crop? [N/y] : ') if kb_input.lower() == 'y': # Graphical Crop idx = wpu.graphical_roi_idx(image, verbose=True) print('New idx:') print(idx) ini_pars['crop'] = str('{0}, {1}, {2}, {3}'.format(idx[0], idx[1], idx[2], idx[3])) with open(inifname, 'w') as configfile: # update values in the ini file config.write(configfile) image = wpu.crop_matrix_at_indexes(image, idx) image_ref = wpu.crop_matrix_at_indexes(image_ref, idx)
def main_terminal(data_dir, zvec_from, startDist, step_z_scan, image_per_point, strideFile, pixelSize=0.65e-6, gratingPeriod=4.8e-6, pattern='Diagonal', sourceDistanceV=-1, sourceDistanceH=32, unFilterSize=1, searchRegion=20, idx4crop=[0, -1, 0, -1], darkRegionSelctionFlag=True): ''' *** all unit in [m] data_dir: data folder path zvec_from: distance type: 'Calculated' 'Tabled' startDist: started distance postion step_z_scan: step size image_per_point: images number for every distance strideFile: Stride (Use only every XX files) pixelSize: Pixel Size gratingPeriod: CB Grating Period pattern: grating pattern 'Diagonal' or 'Edge'] sourceDistanceV: Distance to Source in the VERTICAL [m] sourceDistanceH: Distance to Source in the Horizontal [m] unFilterSize: Size for Uniform Filter [Pixels] default_value 1 searchRegion: Size of Region for Searching the Peak [in Pixels] default_value=20 idx4crop: crop area [low_y, high_y, low_x, high_x ] darkRegionSelctionFlag: use dark region [0, 20, 0, 20]? ''' wpu._mpl_settings_4_nice_graphs() # ============================================================================= # %% Load Image # ============================================================================= originalDir = os.getcwd() # samplefileName = easyqt.get_file_names("Choose one of the scan files")[0] # data_dir = samplefileName.rsplit('/', 1)[0] os.chdir(data_dir) try: os.mkdir(data_dir + '/output/') except: pass fname2save = data_dir + '/output/' + 'zscan' # wpu.print_blue('MESSAGE: Loading files ' + # samplefileName.rsplit('_', 1)[0] + '*.tif') wpu.print_blue('MESSAGE: Loading files ' + data_dir + '/*.tif') # listOfDataFiles = glob.glob(samplefileName.rsplit('_', 2)[0] + '*.tif') listOfDataFiles = glob.glob(os.path.join(data_dir, '*.tif')) listOfDataFiles.sort() nfiles = len(listOfDataFiles) # zvec_from = easyqt.get_choice(message='z distances is calculated or from table?', # title='Title', # choices=['Calculated', 'Tabled']) # %% if zvec_from == 'Calculated': # startDist = easyqt.get_float('Starting distance scan [mm]', # title='Title', # default_value=20)*1e-3 # step_z_scan = easyqt.get_float('Step size scan [mm]', # title='Title', # default_value=5)*1e-3 # image_per_point = easyqt.get_int('Number of images by step', # title='Title', # default_value=1) zvec = np.linspace( startDist, startDist + step_z_scan * (nfiles / image_per_point - 1), int(nfiles / image_per_point)) zvec = zvec.repeat(image_per_point) # strideFile = easyqt.get_int('Stride (Use only every XX files)', # title='Title', # default_value=1) listOfDataFiles = listOfDataFiles[0::strideFile] zvec = zvec[0::strideFile] print(zvec) elif zvec_from == 'Tabled': zvec = np.loadtxt( easyqt.get_file_names("Table with the z distance values in mm") [0]) * 1e-3 step_z_scan = np.mean(np.diff(zvec)) if step_z_scan > 0: pass else: listOfDataFiles = listOfDataFiles[::-1] zvec = zvec[::-1] img = dxchange.read_tiff(listOfDataFiles[0]) # ============================================================================= # %% Experimental parameters # ============================================================================= # pixelSize = easyqt.get_float("Enter Pixel Size [um]", # title='Experimental Values', # default_value=.6500, decimals=5)*1e-6 # gratingPeriod = easyqt.get_float("Enter CB Grating Period [um]", # title='Experimental Values', # default_value=4.8)*1e-6 # pattern = easyqt.get_choice(message='Select CB Grating Pattern', # title='Title', # choices=['Diagonal', 'Edge']) # # choices=['Edge', 'Diagonal']) # sourceDistanceV = easyqt.get_float("Enter Distance to Source\n in the VERTICAL [m]", # title='Experimental Values', # default_value=-0.73) # sourceDistanceH = easyqt.get_float("Enter Distance to Source\n in the Horizontal [m]", # title='Experimental Values', # default_value=34.0) # unFilterSize = easyqt.get_int("Enter Size for Uniform Filter [Pixels]\n" + # " (Enter 1 to NOT use the filter)", # title='Experimental Values', # default_value=1) # searchRegion = easyqt.get_int("Enter Size of Region for Searching\n the Peak [in Pixels]", # title='Experimental Values', # default_value=20) os.chdir(originalDir) # ============================================================================= # %% Crop # ============================================================================= idx4crop = [0, -1, 0, -1] # [colorlimit, # cmap] = wpu.plot_slide_colorbar(img, # title='SELECT COLOR SCALE,\n' + # 'Raw Image, No Crop', # xlabel=r'x [$\mu m$ ]', # ylabel=r'y [$\mu m$ ]', # extent=wpu.extent_func(img, # pixelSize)*1e6) # idx4crop = wpu.graphical_roi_idx(img, verbose=True, # kargs4graph={'cmap': cmap, # 'vmin': colorlimit[0], # 'vmax': colorlimit[1]}) wpu.print_blue("MESSAGE: idx for cropping") wpu.print_blue(idx4crop) # ============================================================================= # %% Dark indexes # ============================================================================= # darkRegionSelctionFlag = easyqt.get_yes_or_no('Do you want to select ' + # 'region for dark calculation?\n' + # 'Press ESC to use [0, 20, 0, 20]') print(darkRegionSelctionFlag) if darkRegionSelctionFlag: idx4cropDark = wpu.graphical_roi_idx(img, verbose=True, kargs4graph={ 'cmap': cmap, 'vmin': colorlimit[0], 'vmax': colorlimit[1] }) else: idx4cropDark = [0, 20, 0, 20] # dark_im = dxchange.read_tiff(listOfDataFiles[0])*0.0 + avgDark img = wpu.crop_matrix_at_indexes(img, idx4crop) # ============================================================================== # %% Harmonic Periods # ============================================================================== if pattern == 'Diagonal': period_harm_Vert = np.int( np.sqrt(2) * pixelSize / gratingPeriod * img.shape[0]) period_harm_Horz = np.int( np.sqrt(2) * pixelSize / gratingPeriod * img.shape[1]) elif pattern == 'Edge': period_harm_Vert = np.int(2 * pixelSize / gratingPeriod * img.shape[0]) period_harm_Horz = np.int(2 * pixelSize / gratingPeriod * img.shape[1]) # Obtain harmonic periods from images (period_harm_Vert, _) = wgi.exp_harm_period(img, [period_harm_Vert, period_harm_Horz], harmonic_ij=['1', '0'], searchRegion=40, isFFT=False, verbose=True) (_, period_harm_Horz) = wgi.exp_harm_period( img, [period_harm_Vert, period_harm_Horz], harmonic_ij=['0', '1'], searchRegion=40, isFFT=False, verbose=True) wpu.log_this('Input folder: ' + data_dir, preffname=fname2save) wpu.log_this('\nNumber of files : ' + str(nfiles)) wpu.log_this('Stride : ' + str(strideFile)) print(zvec_from) wpu.log_this('Z distances is ' + zvec_from) if zvec_from == 'Calculated': wpu.log_this('Step zscan [mm] : {:.4g}'.format(step_z_scan * 1e3)) wpu.log_this('Start point zscan [mm] : {:.4g}'.format(startDist * 1e3)) wpu.log_this('Pixel Size [um] : {:.4g}'.format(pixelSize * 1e6)) wpu.log_this('Grating Period [um] : {:.4g}'.format(gratingPeriod * 1e6)) wpu.log_this('Grating Pattern : ' + pattern) wpu.log_this('Crop idxs : ' + str(idx4crop)) wpu.log_this('Dark idxs : ' + str(idx4cropDark)) wpu.log_this('Vertical Source Distance: ' + str(sourceDistanceV)) wpu.log_this('Horizontal Source Distance: ' + str(sourceDistanceH)) wpu.log_this('Uniform Filter Size : {:d}'.format(unFilterSize)) wpu.log_this('Search Region : {:d}'.format(searchRegion)) # ============================================================================= # %% Calculate everything # ============================================================================= # ============================================================================= # %% multiprocessing # ============================================================================= ncpus = cpu_count() wpu.print_blue("MESSAGE: %d cpu's available" % ncpus) tzero = time.time() p = Pool(ncpus - 2) indexes = range(len(listOfDataFiles)) parameters = [] for i in indexes: parameters.append([ i, listOfDataFiles, zvec, idx4cropDark, idx4crop, period_harm_Vert, sourceDistanceV, period_harm_Horz, sourceDistanceH, searchRegion, unFilterSize ]) res = p.map(_func, parameters) p.close() wpu.print_blue('MESSAGE: Time spent: {0:.3f} s'.format(time.time() - tzero)) ''' res = [] for i in range(len(listOfDataFiles)): res.append(_func(i)) print(res) ''' # ============================================================================= # %% Sorting the data # ============================================================================= contrastV = np.asarray([x[0] for x in res]) contrastH = np.asarray([x[1] for x in res]) p0 = np.asarray([x[2] for x in res]) pv = np.asarray([x[3] for x in res]) ph = np.asarray([x[4] for x in res]) pattern_period_Vert_z = pixelSize / (pv[:, 0] - p0[:, 0]) * img.shape[0] pattern_period_Horz_z = pixelSize / (ph[:, 1] - p0[:, 1]) * img.shape[1] # ============================================================================= # %% Save csv file # ============================================================================= outputfname = wpu.get_unique_filename(fname2save, 'csv') wpu.save_csv_file(np.c_[zvec.T, contrastV.T, contrastH.T, pattern_period_Vert_z.T, pattern_period_Horz_z.T], outputfname, headerList=[ 'z [m]', 'Vert Contrast', 'Horz Contrast', 'Vert Period [m]', 'Horz Period [m]' ]) wpu.log_this('\nOutput file: ' + outputfname) # ============================================================================= # %% Plot # ============================================================================= # contrast vs z fig = plt.figure(figsize=(10, 7)) plt.plot(zvec * 1e3, contrastV * 100, '-ko', label='Vert') plt.plot(zvec * 1e3, contrastH * 100, '-ro', label='Hor') plt.xlabel(r'Distance $z$ [mm]', fontsize=14) plt.ylabel(r'Visibility $\times$ 100 [%]', fontsize=14) plt.title('Visibility vs detector distance', fontsize=14, weight='bold') plt.legend(fontsize=14, loc=0) wpu.save_figs_with_idx(fname2save) plt.show(block=False) # ============================================================================= # %% Plot Harmonic position and calculate source distance # ============================================================================= from wavepytools.diag.coherence.fit_singleGratingCoherence_z_scan import fit_period_vs_z #xshi 20190719 #from fit_singleGratingCoherence_z_scan import fit_period_vs_z (sourceDistance_from_fit_V, patternPeriodFromData_V) = fit_period_vs_z(zvec, pattern_period_Vert_z, contrastV, direction='Vertical', threshold=.002, fname4graphs=fname2save) (sourceDistance_from_fit_H, patternPeriodFromData_H) = fit_period_vs_z(zvec, pattern_period_Horz_z, contrastH, direction='Horizontal', threshold=0.0005, fname4graphs=fname2save)