Example #1
0
def _load_experimental_pars(argv):

    global gui_mode

    if len(argv) == 6:

        fname = argv[1]
        str4title = argv[2]
        nominalRadius = float(argv[3]) * 1e-6

        menu_choices4lensmode = [
            '2D Lens Stigmatic Lens', '1Dx Horizontal focusing',
            '1Dy Vertical focusing'
        ]
        lensGeometry = menu_choices4lensmode[int(argv[4])]

        diameter4fit_list = [float(a) * 1e-6 for a in argv[5].split(',')]

        for i, arg in enumerate(argv):
            print('arg {}: '.format(i) + argv[i])

        gui_mode = False
        wpu.print_red(argv)

    elif len(argv) == 1:

        (fname, str4title, nominalRadius, diameter4fit_list,
         lensGeometry) = _intial_gui_setup()

        gui_mode = True

    else:
        print('ERROR: wrong number of inputs: {} \n'.format(len(argv) - 1) +
              'Usage: \n'
              '\n'
              'fit_residual_lenses.py : (no inputs) load dialogs \n'
              '\n'
              'fit_residual_lenses.py [args] \n'
              '\n'
              'arg1: file name with thickness image\n'
              'arg2: String for Titles\n'
              'arg3: nominal curvature radius for fitting\n'
              'arg4: index for lens geometry:\n'
              '\t0 : 2D Lens Stigmatic Lens\n'
              '\t1 : 1Dx Horizontal focusing\n'
              '\t2 : 1Dy Vertical focusing\n'
              'arg5: diameter4fit_list:\n'
              '\n')

        for i, arg in enumerate(argv):
            print('arg {}: '.format(i) + argv[i])

        exit(-1)

    if str4title != '':
        str4title += ', '

    return fname, str4title, nominalRadius, diameter4fit_list, lensGeometry
Example #2
0
def dpc_integration(dpc01,
                    dpc10,
                    pixelsize,
                    idx4crop=[0, -1, 0, -1],
                    plotErrorIntegration=False,
                    saveFileSuf=None,
                    shifthalfpixel=False,
                    method='FC'):
    '''
    TODO: Write Docstring

    Integration of DPC to obtain phase. Currently only supports
    Frankot Chellappa
    '''

    if idx4crop == '':

        vmin = wpu.mean_plus_n_sigma(dpc01**2 + dpc10**2, -3)
        vmax = wpu.mean_plus_n_sigma(dpc01**2 + dpc10**2, 3)

        _, idx = wpu.crop_graphic_image(dpc01**2 + dpc10**2,
                                        kargs4graph={
                                            'cmap': 'viridis',
                                            'vmin': vmin,
                                            'vmax': vmax
                                        })
    else:
        idx = idx4crop

    dpc01 = wpu.crop_matrix_at_indexes(dpc01, idx)
    dpc10 = wpu.crop_matrix_at_indexes(dpc10, idx)

    if method == 'FC':

        phase = wps.frankotchellappa(dpc01 * pixelsize[1],
                                     dpc10 * pixelsize[0],
                                     reflec_pad=True)
        phase = np.real(phase)

    else:
        wpu.print_red('ERROR: Unknown integration method: ' + method)

    if plotErrorIntegration:
        wps.error_integration(dpc01 * pixelsize[1],
                              dpc10 * pixelsize[0],
                              phase,
                              pixelsize,
                              errors=False,
                              shifthalfpixel=shifthalfpixel,
                              plot_flag=True)

        if saveFileSuf is not None:
            wpu.save_figs_with_idx(saveFileSuf)

    return phase
def gui_list_data_phase_stepping(directory=''):
    '''
        TODO: Write Docstring
    '''

    originalDir = os.getcwd()

    if directory != '':

        if os.path.isdir(directory):
            os.chdir(directory)
        else:
            wpu.print_red("WARNING: Directory " + directory +
                          " doesn't exist.")
            wpu.print_blue("MESSAGE: Using current working directory " +
                           originalDir)

    samplef1 = easyqt.get_file_names("Choose one of the scan " +
                                     "files with sample")

    if len(samplef1) == 3:
        [samplef1, samplef2, samplef3] = samplef1

    else:

        samplef1 = samplef1[0]
        os.chdir(samplef1.rsplit('/', 1)[0])

        samplef2 = easyqt.get_file_names("File name with Reference")[0]
        samplef3 = easyqt.get_file_names("File name with Dark Image")

        if len(samplef3) == 1:
            samplef3 = samplef3[0]
        else:
            samplef3 = ''
            wpu.print_red('MESSAGE: You choosed to not use dark images')

    wpu.print_blue('MESSAGE: Sample files directory: ' +
                   samplef1.rsplit('/', 1)[0])

    samplef1.rsplit('/', 1)[0]

    listf1 = load_files_scan(samplef1)
    listf2 = load_files_scan(samplef2)
    listf3 = load_files_scan(samplef3)

    listf1.sort()
    listf2.sort()
    listf3.sort()

    return listf1, listf2, listf3
def _get_delta_gui(phenergy):

    choices = ['Diamond, 3.525g/cm^3',
               'Beryllium, 1.848 g/cm^3',
               'Manual Input']

    menu_choices = [choices[0], choices[1], choices[2]]  # Change order here!

    choice = easyqt.get_choice(message='Select Sample Material',
                               title='Title',
                               choices=menu_choices)

    if choice is None:
        choice = menu_choices[0]

    if choice == choices[0]:
        # delta Diamond, density from wikipedia:
        # delta at 8KeV: 1.146095341e-05
        delta = 1 - xraylib.Refractive_Index_Re("C", phenergy/1e3, 3.525)
        material = 'Diamond'

    elif choice == choices[1]:
        # delta at 8KeV = 5.3265E-06
        delta = 1 - xraylib.Refractive_Index_Re("Be", phenergy/1e3,
                                                xraylib.ElementDensity(4))
        material = 'Beryllium'

    elif choice == 'Manual Input':
        # delta Diamond, density from wikipedia:
        material = easyqt.get_string('Enter symbol of material ' +
                                     '(if compounds, you need to' +
                                     ' provide the density):',
                                     title='Thickness Calculation',
                                     default_response='C')

        elementZnumber = xraylib.SymbolToAtomicNumber(material)
        density = xraylib.ElementDensity(elementZnumber)

        density = easyqt.get_float('Density [g/cm^3] ' +
                                   '(Enter for default value)',
                                   title='Thickness Calculation',
                                   default_value=density)

        delta = 1 - xraylib.Refractive_Index_Re(material,
                                                phenergy/1e3, density)

    else:
        wpu.print_red('ERROR: unknown option')

    return delta, material
Example #5
0
def _biggest_radius(array, pixelSize, radius4fit):

    bool_x = (array.shape[0] // 2 < radius4fit // pixelSize[0])
    bool_y = (array.shape[1] // 2 < radius4fit // pixelSize[1])

    if bool_x or bool_y:
        radius4fit = .9 * np.min((thickness.shape[0] * pixelSize[0] / 2,
                                  thickness.shape[1] * pixelSize[1] / 2))

        wpu.print_red('WARNING: Image size smaller than ' +
                      'the region for fit')

        wpu.print_red('WARNING: New Radius:' +
                      ' {:.3f}um'.format(radius4fit * 1e6))

    return radius4fit
Example #6
0
def dpc_integration(dpc01, dpc10, pixelsize, idx4crop=[0, -1, 0, -1],
                    plotErrorIntegration=False,
                    saveFileSuf=None,
                    shifthalfpixel=False, method='FC'):
    '''
    TODO: Write Docstring

    Integration of DPC to obtain phase. Currently only supports
    Frankot Chellappa
    '''

    if idx4crop == '':

        vmin = wpu.mean_plus_n_sigma(dpc01**2+dpc10**2, -3)
        vmax = wpu.mean_plus_n_sigma(dpc01**2+dpc10**2, 3)
        _, idx = wpu.crop_graphic_image(dpc01**2+dpc10**2,
                                        kargs4graph={'cmap': 'viridis',
                                                     'vmin': vmin,
                                                     'vmax': vmax})
    else:
        idx = idx4crop

    dpc01 = wpu.crop_matrix_at_indexes(dpc01, idx)
    dpc10 = wpu.crop_matrix_at_indexes(dpc10, idx)

    if method == 'FC':

        phase = wps.frankotchellappa(dpc01*pixelsize[1],
                                     dpc10*pixelsize[0],
                                     reflec_pad=True)
        phase = np.real(phase)

    else:
        wpu.print_red('ERROR: Unknown integration method: ' + method)

    if plotErrorIntegration:
        wps.error_integration(dpc01*pixelsize[1],
                              dpc10*pixelsize[0],
                              phase, pixelsize, errors=False,
                              shifthalfpixel=shifthalfpixel, plot_flag=True)

        if saveFileSuf is not None:
            wpu.save_figs_with_idx(saveFileSuf)

    return phase
Example #7
0
def _check_harmonic_inside_image(harV, harH, nRows, nColumns, periodVert,
                                 periodHor):
    """
    Check if full harmonic image is within the main image
    """

    errFlag = False

    if (harV + .5) * periodVert > nRows / 2:
        wpu.print_red("ATTENTION: Harmonic Peak " +
                      "{:d}{:d}".format(harV, harH) +
                      " is out of image vertical range.")
        errFlag = True

    if (harH + .5) * periodHor > nColumns / 2:
        wpu.print_red("ATTENTION: Harmonic Peak " +
                      "{:d}{:d} is ".format(harV, harH) +
                      "is out of image horizontal range.")
        errFlag = True

    if errFlag:
        raise ValueError("ERROR: Harmonic Peak " +
                         "{:d}{:d} is ".format(harV, harH) +
                         "out of image frequency range.")
Example #8
0
def _check_harmonic_inside_image(harV, harH, nRows, nColumns,
                                 periodVert, periodHor):
    """
    Check if full harmonic image is within the main image
    """

    errFlag = False

    if (harV + .5)*periodVert > nRows / 2:
        wpu.print_red("ATTENTION: Harmonic Peak " +
                      "{:d}{:d}".format(harV, harH) +
                      " is out of image vertical range.")
        errFlag = True

    if (harH + .5)*periodHor > nColumns / 2:
        wpu.print_red("ATTENTION: Harmonic Peak " +
                      "{:d}{:d} is ".format(harV, harH) +
                      "is out of image horizontal range.")
        errFlag = True

    if errFlag:
        raise ValueError("ERROR: Harmonic Peak " +
                         "{:d}{:d} is ".format(harV, harH) +
                         "out of image frequency range.")
Example #9
0
def extract_harmonic(img,
                     harmonicPeriod,
                     harmonic_ij='00',
                     searchRegion=10,
                     isFFT=False,
                     plotFlag=False,
                     verbose=True):
    """
    Function to extract one harmonic image of the FFT of single grating
    Talbot imaging.


    The function use the provided value of period to search for the harmonics
    peak. The search is done in a rectangle of size
    ``periodVert*periodHor/searchRegion**2``. The final result is a rectagle of
    size ``periodVert x periodHor`` centered at
    ``(harmonic_Vertical*periodVert x harmonic_Horizontal*periodHor)``


    Parameters
    ----------

    img : 	ndarray – Data (data_exchange format)
        Experimental image, whith proper blank image, crop and rotation already
        applied.

    harmonicPeriod : list of integers in the format [periodVert, periodHor]
        ``periodVert`` and ``periodVert`` are the period of the harmonics in
        the reciprocal space in pixels. For the checked board grating,
        periodVert = sqrt(2) * pixel Size / grating Period * number of
        rows in the image. For 1D grating, set one of the values to negative or
        zero (it will set the period to number of rows or colunms).

    harmonic_ij : string or list of string
        string with the harmonic to extract, for instance '00', '01', '10'
        or '11'. In this notation negative harmonics are not allowed.

        Alternativelly, it accepts a list of string
        ``harmonic_ij=[harmonic_Vertical, harmonic_Horizontal]``, for instance
        ``harmonic_ij=['0', '-1']``

        Note that since the original image contain only real numbers (not
        complex), then negative and positive harmonics are symetric
        related to zero.
    isFFT : Boolean
        Flag that tells if the input image ``img`` is in the reciprocal
        (``isFFT=True``) or in the real space (``isFFT=False``)

    searchRegion: int
        search for the peak will be in a region of harmonicPeriod/searchRegion
        around the theoretical peak position

    plotFlag: Boolean
        Flag to plot the image in the reciprocal space and to show the position
        of the found peaked and the limits of the harmonic image

    verbose: Boolean
        verbose flag.


    Returns
    -------
    2D ndarray
        Copped Images of the harmonics ij


    This functions crops a rectagle of size ``periodVert x periodHor`` centered
    at ``(harmonic_Vertical*periodVert x harmonic_Horizontal*periodHor)`` from
    the provided FFT image.


    Note
    ----
        * Note that it is the FFT of the image that is required.
        * The search for the peak is only used to print warning messages.

    **Q: Why not the real image??**

    **A:** Because FFT can be time consuming. If we use the real image, it will
    be necessary to run FFT for each harmonic. It is encourage to wrap this
    function within a function that do the FFT, extract the harmonics, and
    return the real space harmonic image.


    See Also
    --------
    :py:func:`wavepy.grating_interferometry.plot_harmonic_grid`

    """

    (nRows, nColumns) = img.shape

    harV = int(harmonic_ij[0])
    harH = int(harmonic_ij[1])

    periodVert = harmonicPeriod[0]
    periodHor = harmonicPeriod[1]

    if verbose:
        wpu.print_blue("MESSAGE: Extracting harmonic " + harmonic_ij[0] +
                       harmonic_ij[1])
        wpu.print_blue("MESSAGE: Harmonic period " +
                       "Horizontal: {:d} pixels".format(periodHor))
        wpu.print_blue("MESSAGE: Harmonic period " +
                       "Vertical: {:d} pixels".format(periodVert))

    # adjusts for 1D grating
    if periodVert <= 0 or periodVert is None:
        periodVert = nRows
        if verbose:
            wpu.print_blue("MESSAGE: Assuming Horizontal 1D Grating")

    if periodHor <= 0 or periodHor is None:
        periodHor = nColumns
        if verbose:
            wpu.print_blue("MESSAGE: Assuming Vertical 1D Grating")

    try:
        _check_harmonic_inside_image(harV, harH, nRows, nColumns, periodVert,
                                     periodHor)
    except ValueError:
        raise SystemExit

    if isFFT:
        imgFFT = img
    else:
        imgFFT = np.fft.fftshift(fft2(img, norm='ortho'))

    intensity = (np.abs(imgFFT))

    #  Estimate harmonic positions
    idxPeak_ij = _idxPeak_ij(harV, harH, nRows, nColumns, periodVert,
                             periodHor)

    del_i, del_j = _error_harmonic_peak(imgFFT, harV, harH, periodVert,
                                        periodHor, searchRegion)

    if verbose:
        print("MESSAGE: extract_harmonic:" + " harmonic peak " +
              harmonic_ij[0] + harmonic_ij[1] + " is misplaced by:")
        print("MESSAGE: {:d} pixels in vertical, {:d} pixels in hor".format(
            del_i, del_j))

        print("MESSAGE: Theoretical peak index: {:d},{:d} [VxH]".format(
            idxPeak_ij[0], idxPeak_ij[1]))

    if ((np.abs(del_i) > searchRegion // 2)
            or (np.abs(del_j) > searchRegion // 2)):

        wpu.print_red("ATTENTION: Harmonic Peak " + harmonic_ij[0] +
                      harmonic_ij[1] + " is too far from theoretical value.")
        wpu.print_red("ATTENTION: {:d} pixels in vertical,".format(del_i) +
                      "{:d} pixels in hor".format(del_j))

    if plotFlag:

        from matplotlib.patches import Rectangle
        plt.figure(figsize=(8, 7))
        plt.imshow(np.log10(intensity),
                   cmap='inferno',
                   extent=wpu.extent_func(intensity))

        plt.xlabel('Pixels')
        plt.ylabel('Pixels')

        xo = idxPeak_ij[1] - nColumns // 2 - periodHor // 2
        yo = nRows // 2 - idxPeak_ij[0] - periodVert // 2
        # xo yo are the lower left position of the reangle

        plt.gca().add_patch(
            Rectangle((xo, yo),
                      periodHor,
                      periodVert,
                      lw=2,
                      ls='--',
                      color='red',
                      fill=None,
                      alpha=1))

        plt.title('Selected Region ' + harmonic_ij[0] + harmonic_ij[1],
                  fontsize=18,
                  weight='bold')
        plt.show(block=False)

    return imgFFT[idxPeak_ij[0] - periodVert // 2:idxPeak_ij[0] +
                  periodVert // 2, idxPeak_ij[1] -
                  periodHor // 2:idxPeak_ij[1] + periodHor // 2]
Example #10
0
    period_estimated = period_estimation_spline(
        ref_stack[:, nlines // 4, ncolumns // 4], stepSize)

    period_estimated += period_estimation_spline(
        ref_stack[:, nlines // 4, 3 * ncolumns // 4], stepSize)

    period_estimated += period_estimation_spline(
        ref_stack[:, 3 * nlines // 4, ncolumns // 4], stepSize)

    period_estimated += period_estimation_spline(
        ref_stack[:, 3 * nlines // 4, 3 * ncolumns // 4], stepSize)

    period_estimated /= 4.0

    wpu.print_red('MESSAGE: Pattern Period from the ' +
                  'data: {:.4f}'.format(period_estimated * 1e6))

    # ==========================================================================
    # %% do your thing
    # ==========================================================================

    (intensity, dk_field, dpc_1d,
     chi2) = main_stepping_grating(img_stack, ref_stack, period_estimated,
                                   stepSize)

    # %% Intensity

    wpu.plot_slide_colorbar(intensity,
                            title='Intensity',
                            xlabel=r'x [$\mu m$]',
                            ylabel=r'y [$\mu m$]',
Example #11
0
def plot_residual_parabolic_lens_2d(thickness,
                                    pixelsize,
                                    fitted,
                                    fitParameters,
                                    saveFigFlag=False,
                                    savePickle=False,
                                    str4title='',
                                    saveSdfData=False,
                                    vlimErrSigma=1,
                                    plotProfileFlag=True,
                                    plot3dFlag=True,
                                    makeAnimation=False):

    xmatrix, ymatrix = wpu.grid_coord(thickness, pixelsize)

    errorThickness = thickness - fitted
    argNotNAN = np.isfinite(errorThickness)

    factorx, unitx = wpu.choose_unit(xmatrix)
    factory, unity = wpu.choose_unit(ymatrix)
    factorz, unitz = wpu.choose_unit(errorThickness[argNotNAN])

    ptp = np.ptp(errorThickness[argNotNAN].flatten() * factorz)
    wpu.print_red('PV: {0:4.3g} '.format(ptp) + unitz[-1] + 'm')

    sigmaError = np.std(errorThickness[argNotNAN].flatten() * factorz)
    wpu.print_red('SDV: {0:4.3g} '.format(sigmaError) + unitz[-1] + 'm')

    str4title += r'Residual, ' + \
                 r'R $= {:.4g} \mu m$,'.format(fitParameters[0]*1e6) + '\n' + \
                 r'PV $= {0:.2f}$ '.format(ptp) + '$' + unitz + '  m$, '\
                 'SDV $= {0:.2f}$ '.format(sigmaError) + '$' + unitz + '  m$'

    # Plot Histogram

    plt.figure(figsize=(7, 8))
    plt.hist(errorThickness[argNotNAN] * factorz,
             100,
             color='r',
             histtype='step')
    plt.xlabel(r'Residual [$' + unitz + '  m$ ]')
    plt.title(str4title)

    if saveFigFlag:
        wpu.save_figs_with_idx(fname2save, extension='png')

    plt.show(block=False)

    # Plot Profiles

    vlimErr = wpu.mean_plus_n_sigma(errorThickness[argNotNAN] * factorz,
                                    vlimErrSigma / 2)
    cmap4graph = plt.cm.Spectral_r
    cmap4graph.set_over('m')
    cmap4graph.set_under('c')

    if plotProfileFlag:

        wpu.plot_profile(xmatrix * factorx,
                         ymatrix * factory,
                         errorThickness * factorz,
                         title=str4title,
                         xlabel=r'[$' + unitx + '  m$ ]',
                         ylabel=r'[$' + unity + '  m$ ]',
                         zlabel=r'[$' + unitz + '  m$ ]',
                         arg4main={
                             'cmap': 'Spectral_r',
                             'vmin': -vlimErr,
                             'vmax': vlimErr,
                             'extend': 'both'
                         })

    if savePickle or saveFigFlag:
        fig = plt.figure(figsize=(10, 7))

        cf = plt.contourf(xmatrix * factorx,
                          ymatrix * factory,
                          errorThickness * factorz,
                          256,
                          cmap=cmap4graph,
                          extend='both')

        plt.clim(-vlimErr, vlimErr)
        plt.contour(cf, levels=cf.levels[::32], colors='gray')

        plt.xlabel(r'[$' + unitx + '  m$ ]', fontsize=22)
        plt.ylabel(r'[$' + unity + '  m$ ]', fontsize=22)
        plt.title(str4title, fontsize=22)
        cbar = plt.colorbar(cf, shrink=.8, aspect=20)
        #        cbar.set_clim(-vlimErr, vlimErr)
        cbar.ax.set_title(r'[$' + unitz + '  m$ ]', y=1.01)

        plt.gca().set_aspect('equal', adjustable='box')
        plt.grid(color='grey')

        if saveFigFlag:
            wpu.save_figs_with_idx(fname2save, extension='png')

        if savePickle:
            wpu.save_figs_with_idx_pickle(fig, fname2save)

        plt.show(block=True)

    # Plot 3D

    if plot3dFlag:

        wpu.print_red('MESSAGE: Ploting 3d in the background')

        fig = plt.figure(figsize=(10, 7), facecolor="white")
        ax = fig.gca(projection='3d')
        plt.tight_layout(pad=2.5)

        surf = ax.plot_trisurf(xmatrix[argNotNAN].flatten() * factorx,
                               ymatrix[argNotNAN].flatten() * factory,
                               errorThickness[argNotNAN].flatten() * factorz,
                               vmin=-vlimErr,
                               vmax=vlimErr,
                               cmap=cmap4graph,
                               linewidth=0.1,
                               shade=False)

        ax.view_init(azim=-120, elev=40)

        plt.xlabel(r'$x$ [$' + unitx + '  m$ ]')
        plt.ylabel(r'$y$ [$' + unity + '  m$ ]')

        plt.title(str4title)

        cbar = plt.colorbar(surf, shrink=.8, aspect=20, extend='both')
        cbar.ax.set_title(r'[$' + unitz + '  m$ ]', y=1.01)

        plt.tight_layout()

        if saveFigFlag:
            wpu.save_figs_with_idx(fname2save, extension='png')

            ax.view_init(azim=690, elev=40)

            wpu.save_figs_with_idx(fname2save, extension='png')

        if makeAnimation:
            #            plt.show(block=False)
            plt.pause(1.0)
            wpu.rocking_3d_figure(ax,
                                  wpu.get_unique_filename(fname2save, 'gif'),
                                  elevOffset=45,
                                  azimOffset=60,
                                  elevAmp=0,
                                  azimAmpl=-1,
                                  dpi=80,
                                  npoints=5)

        plt.pause(1.0)
        plt.close('all')
        #    plt.show(block=True)

    if saveSdfData:
        mask_for_sdf = errorThickness * 0.0
        mask_for_sdf[~argNotNAN] = 1.0
        errorThickness[~argNotNAN] = 00000000
        wpu.save_sdf_file(
            errorThickness, pixelsize,
            wpu.get_unique_filename(fname2save + '_residual', 'sdf'))
        wpu.save_sdf_file(
            mask_for_sdf, pixelsize,
            wpu.get_unique_filename(fname2save + '_residual_mask', 'sdf'))

    return sigmaError / factorz, ptp / factorz
Example #12
0
def plot_residual_1d(xvec,
                     data,
                     fitted,
                     str4title='',
                     saveFigFlag=False,
                     saveAsciiFlag=False):

    # Plot Horizontal profile

    errorThickness = -data + fitted
    argNotNAN = np.isfinite(errorThickness)

    factorx, unitx = wpu.choose_unit(xvec)
    factory1, unity1 = wpu.choose_unit(data)
    factory2, unity2 = wpu.choose_unit(errorThickness)

    ptp = np.ptp(errorThickness[argNotNAN].flatten() * factory2)
    wpu.print_red('PV: {0:4.3g} '.format(ptp) + unity2[-1] + 'm')

    sigmaError = np.std(errorThickness[argNotNAN].flatten() * factory2)
    wpu.print_red('SDV: {0:4.3g} '.format(sigmaError) + unity2[-1] + 'm')

    str4title += '\n' + \
                 r'PV $= {0:.2f}$ '.format(ptp) + '$' + unity2 + '  m$, '\
                 'SDV $= {0:.2f}$ '.format(sigmaError) + '$' + unity2 + '  m$'

    plt.figure(figsize=(10, 7))
    ax1 = plt.gca()
    ax1.plot(xvec[argNotNAN] * factorx,
             data[argNotNAN] * factory1,
             '-ko',
             markersize=5,
             label='1D data')

    ax1.plot(xvec[argNotNAN] * factorx,
             fitted[argNotNAN] * factory1,
             '-+r',
             label='Fit parabolic')

    ax2 = ax1.twinx()

    # trick to add both axes to legend
    ax2.plot(np.nan, '-ko', label='1D data')
    ax2.plot(np.nan, '-+r', label='Fit parabolic')

    ax2.plot(xvec[argNotNAN] * factorx,
             errorThickness[argNotNAN] * factory2,
             '-+',
             markersize=5,
             label='fit residual')

    plt.title(str4title)

    for tl in ax2.get_yticklabels():
        tl.set_color('b')

    ax2.legend(loc=1, fontsize='small')
    # trick to add both axes to legend

    ax1.grid(color='gray')

    ax1.set_xlabel(r'[$' + unitx + ' m$]')
    ax1.set_ylabel(r'Thickness ' + r'[$' + unity1 + ' m$]')

    #    ax2.set_ylim([-20, 20])

    ax2.set_ylim(-1.1 * np.max(np.abs(errorThickness[argNotNAN]) * factory2),
                 1.1 * np.max(np.abs(errorThickness[argNotNAN]) * factory2))
    ax2.set_ylabel(r'Residual' + r'[$' + unity2 + ' m$]')
    ax2.grid(b='off')
    plt.xlim(-1.1 * np.max(xvec * factorx), 1.1 * np.max(xvec * factorx))

    plt.tight_layout(rect=(0, 0, 1, .98))

    if saveFigFlag:
        wpu.save_figs_with_idx(fname2save, extension='png')

    if saveAsciiFlag:
        csv_fname = wpu.get_unique_filename(fname2save, 'csv')
        np.savetxt(csv_fname,
                   np.transpose([xvec, data, fitted, fitted - data]),
                   delimiter=',\t',
                   header="xvec, data, fitted, residual, " + str4title,
                   fmt='%.6g')
    plt.show(block=False)
Example #13
0
        thickness, pixelSize, headerdic = wpu.load_sdf_file(fname)
        xx, yy = wpu.realcoordmatrix(thickness.shape[1], pixelSize[1],
                                     thickness.shape[0], pixelSize[0])

    elif fname.split('.')[-1] == 'pickle':

        thickness, xx, yy = load_pickle_surf(fname, False)

        thickness *= 1e-6
        #            thickness *= -1.0 # minus1 here
        xx *= 1e-6
        yy *= 1e-6
        pixelSize = [np.mean(np.diff(xx[0, :])), np.mean(np.diff(yy[:, 0]))]

    else:
        wpu.print_red('ERROR: Wrong file type!')
        exit(-1)

    thickness -= np.nanmin(thickness)
    saveFigFlag = True

    # %% Crop

    metrology_flag = False
    if metrology_flag:
        thickness_temp = np.copy(thickness)

        thickness_temp[np.isnan(thickness)] = 0.0

        idx4crop = wpu.graphical_roi_idx(thickness_temp * 1e6, verbose=True)
    period_estimated += period_estimation_spline(ref_stack[:, nlines//4,
                                                           3*ncolumns//4],
                                                 stepSize)

    period_estimated += period_estimation_spline(ref_stack[:, 3*nlines//4,
                                                           ncolumns//4],
                                                 stepSize)

    period_estimated += period_estimation_spline(ref_stack[:, 3*nlines//4,
                                                           3*ncolumns//4],
                                                 stepSize)

    period_estimated /= 4.0

    wpu.print_red('MESSAGE: Pattern Period from the ' +
                  'data: {:.4f}'.format(period_estimated*1e6))

    # ==========================================================================
    # %% do your thing
    # ==========================================================================

    (intensity,
     dk_field,
     dpc_1d,
     chi2) = main_stepping_grating(img_stack, ref_stack,
                                   period_estimated, stepSize)

    # %% Intensity

    wpu.plot_slide_colorbar(intensity,
                            title='Intensity',
                   scale=1)

plt.autoscale(axis='both')
plt.title('Image displacement')
plt.xlabel('Horizontal Shift [Pixels]')
plt.ylabel('Vertical Shift [Pixels]')
plt.grid('on')

plt.gca().invert_yaxis()
plt.savefig('aligned_png/displacements.png')

plt.show(block=True)

# %%

wpu.print_red('MESSAGE: Done!')

# %%
#
#
#
#import numpy as np
#
#plt.ioff()
#count = 0
#for i in range(-10, 10, 1):
#
#    foo = np.pad(wpu.dummy_images('Shapes', (500, 500), noise=1), 100, 'edge')[50+i:650+i, 50-i:650-i]
#
#    foo = np.pad(foo, 200, 'edge')
#
Example #16
0
def extract_harmonic(img, harmonicPeriod,
                     harmonic_ij='00', searchRegion=10, isFFT=False,
                     plotFlag=False, verbose=True):

    """
    Function to extract one harmonic image of the FFT of single grating
    Talbot imaging.


    The function use the provided value of period to search for the harmonics
    peak. The search is done in a rectangle of size
    ``periodVert*periodHor/searchRegion**2``. The final result is a rectagle of
    size ``periodVert x periodHor`` centered at
    ``(harmonic_Vertical*periodVert x harmonic_Horizontal*periodHor)``


    Parameters
    ----------

    img : 	ndarray – Data (data_exchange format)
        Experimental image, whith proper blank image, crop and rotation already
        applied.

    harmonicPeriod : list of integers in the format [periodVert, periodHor]
        ``periodVert`` and ``periodVert`` are the period of the harmonics in
        the reciprocal space in pixels. For the checked board grating,
        periodVert = sqrt(2) * pixel Size / grating Period * number of
        rows in the image. For 1D grating, set one of the values to negative or
        zero (it will set the period to number of rows or colunms).

    harmonic_ij : string or list of string
        string with the harmonic to extract, for instance '00', '01', '10'
        or '11'. In this notation negative harmonics are not allowed.

        Alternativelly, it accepts a list of string
        ``harmonic_ij=[harmonic_Vertical, harmonic_Horizontal]``, for instance
        ``harmonic_ij=['0', '-1']``

        Note that since the original image contain only real numbers (not
        complex), then negative and positive harmonics are symetric
        related to zero.
    isFFT : Boolean
        Flag that tells if the input image ``img`` is in the reciprocal
        (``isFFT=True``) or in the real space (``isFFT=False``)

    searchRegion: int
        search for the peak will be in a region of harmonicPeriod/searchRegion
        around the theoretical peak position

    plotFlag: Boolean
        Flag to plot the image in the reciprocal space and to show the position
        of the found peaked and the limits of the harmonic image

    verbose: Boolean
        verbose flag.


    Returns
    -------
    2D ndarray
        Copped Images of the harmonics ij


    This functions crops a rectagle of size ``periodVert x periodHor`` centered
    at ``(harmonic_Vertical*periodVert x harmonic_Horizontal*periodHor)`` from
    the provided FFT image.


    Note
    ----
        * Note that it is the FFT of the image that is required.
        * The search for the peak is only used to print warning messages.

    **Q: Why not the real image??**

    **A:** Because FFT can be time consuming. If we use the real image, it will
    be necessary to run FFT for each harmonic. It is encourage to wrap this
    function within a function that do the FFT, extract the harmonics, and
    return the real space harmonic image.


    See Also
    --------
    :py:func:`wavepy.grating_interferometry.plot_harmonic_grid`

    """

    (nRows, nColumns) = img.shape

    harV = int(harmonic_ij[0])
    harH = int(harmonic_ij[1])

    periodVert = harmonicPeriod[0]
    periodHor = harmonicPeriod[1]

    if verbose:
            wpu.print_blue("MESSAGE: Extracting harmonic " +
                           harmonic_ij[0] + harmonic_ij[1])
            wpu.print_blue("MESSAGE: Harmonic period " +
                           "Horizontal: {:d} pixels".format(periodHor))
            wpu.print_blue("MESSAGE: Harmonic period " +
                           "Vertical: {:d} pixels".format(periodVert))

    # adjusts for 1D grating
    if periodVert <= 0 or periodVert is None:
        periodVert = nRows
        if verbose:
            wpu.print_blue("MESSAGE: Assuming Horizontal 1D Grating")

    if periodHor <= 0 or periodHor is None:
        periodHor = nColumns
        if verbose:
            wpu.print_blue("MESSAGE: Assuming Vertical 1D Grating")

    try:
        _check_harmonic_inside_image(harV, harH, nRows, nColumns,
                                     periodVert, periodHor)
    except ValueError:
        raise SystemExit

    if isFFT:
        imgFFT = img
    else:
        imgFFT = np.fft.fftshift(fft2(img, norm='ortho'))

    intensity = (np.abs(imgFFT))

    #  Estimate harmonic positions
    idxPeak_ij = _idxPeak_ij(harV, harH, nRows, nColumns,
                             periodVert, periodHor)

    del_i, del_j = _error_harmonic_peak(imgFFT, harV, harH,
                                        periodVert, periodHor,
                                        searchRegion)

    if verbose:
        print("MESSAGE: extract_harmonic:" +
              " harmonic peak " + harmonic_ij[0] + harmonic_ij[1] +
              " is misplaced by:")
        print("MESSAGE: {:d} pixels in vertical, {:d} pixels in hor".format(
               del_i, del_j))

        print("MESSAGE: Theoretical peak index: {:d},{:d} [VxH]".format(
              idxPeak_ij[0], idxPeak_ij[1]))

    if ((np.abs(del_i) > searchRegion // 2) or
       (np.abs(del_j) > searchRegion // 2)):

        wpu.print_red("ATTENTION: Harmonic Peak " + harmonic_ij[0] +
                      harmonic_ij[1] + " is too far from theoretical value.")
        wpu.print_red("ATTENTION: {:d} pixels in vertical,".format(del_i) +
                      "{:d} pixels in hor".format(del_j))

    if plotFlag:

        from matplotlib.patches import Rectangle
        plt.figure(figsize=(8, 7))
        plt.imshow(np.log10(intensity), cmap='inferno', extent=wpu.extent_func(intensity))

        plt.xlabel('Pixels')
        plt.ylabel('Pixels')

        xo = idxPeak_ij[1] - nColumns//2 - periodHor//2
        yo = nRows//2 - idxPeak_ij[0] - periodVert//2
        # xo yo are the lower left position of the reangle

        plt.gca().add_patch(Rectangle((xo, yo),
                                      periodHor, periodVert,
                                      lw=2, ls='--', color='red',
                                      fill=None, alpha=1))

        plt.title('Selected Region ' + harmonic_ij[0] + harmonic_ij[1],
                  fontsize=18, weight='bold')
        plt.show(block=False)

    return imgFFT[idxPeak_ij[0] - periodVert//2:
                  idxPeak_ij[0] + periodVert//2,
                  idxPeak_ij[1] - periodHor//2:
                  idxPeak_ij[1] + periodHor//2]