Example #1
0
 def _BuildGraph(self, graph):
     with graph.as_default():
         self._pd_frame_id = tf.compat.v1.placeholder(dtype=tf.int64)
         self._pd_bbox = tf.compat.v1.placeholder(dtype=tf.float32)
         self._pd_type = tf.compat.v1.placeholder(dtype=tf.uint8)
         self._pd_score = tf.compat.v1.placeholder(dtype=tf.float32)
         self._gt_frame_id = tf.compat.v1.placeholder(dtype=tf.int64)
         self._gt_bbox = tf.compat.v1.placeholder(dtype=tf.float32)
         self._gt_type = tf.compat.v1.placeholder(dtype=tf.uint8)
         self._gt_difficulty = tf.compat.v1.placeholder(dtype=tf.uint8)
         metrics = detection_metrics.get_detection_metric_ops(
             config=self._BuildConfig(),
             prediction_frame_id=self._pd_frame_id,
             prediction_bbox=self._pd_bbox,
             prediction_type=self._pd_type,
             prediction_score=self._pd_score,
             prediction_overlap_nlz=tf.zeros_like(self._pd_frame_id,
                                                  dtype=tf.bool),
             ground_truth_bbox=self._gt_bbox,
             ground_truth_type=self._gt_type,
             ground_truth_frame_id=self._gt_frame_id,
             # ground_truth_difficulty=tf.ones_like(self._gt_frame_id, dtype=tf.uint8),
             ground_truth_difficulty=self._gt_difficulty,
             recall_at_precision=0.95,
         )
         return metrics
Example #2
0
    def build_graph(self, graph):
        with graph.as_default():
            self._pd_frame_id = tf.compat.v1.placeholder(dtype=tf.int64)
            self._pd_bbox = tf.compat.v1.placeholder(dtype=tf.float32)
            self._pd_type = tf.compat.v1.placeholder(dtype=tf.uint8)
            self._pd_score = tf.compat.v1.placeholder(dtype=tf.float32)
            self._pd_overlap_nlz = tf.compat.v1.placeholder(dtype=tf.bool)

            self._gt_frame_id = tf.compat.v1.placeholder(dtype=tf.int64)
            self._gt_bbox = tf.compat.v1.placeholder(dtype=tf.float32)
            self._gt_type = tf.compat.v1.placeholder(dtype=tf.uint8)
            self._gt_difficulty = tf.compat.v1.placeholder(dtype=tf.uint8)
            metrics = detection_metrics.get_detection_metric_ops(
                config=self.build_config(),
                prediction_frame_id=self._pd_frame_id,
                prediction_bbox=self._pd_bbox,
                prediction_type=self._pd_type,
                prediction_score=self._pd_score,
                prediction_overlap_nlz=self._pd_overlap_nlz,
                ground_truth_bbox=self._gt_bbox,
                ground_truth_type=self._gt_type,
                ground_truth_frame_id=self._gt_frame_id,
                ground_truth_difficulty=self._gt_difficulty,
            )
            return metrics
Example #3
0
    def cal_mAP(prediction_file,
                gt_file,
                ignore_box_by_point_num=-1,
                fov_only=False,
                fov=[-115.2, 115.2]):
        import tensorflow as tf
        from google.protobuf import text_format
        from waymo_open_dataset import label_pb2
        from waymo_open_dataset import dataset_pb2
        from waymo_open_dataset.protos import metrics_pb2
        from waymo_open_dataset.metrics.python import detection_metrics

        streams = open(prediction_file, 'rb').read()
        objects = metrics_pb2.Objects()
        objects.ParseFromString(bytearray(streams))
        pred_objects = objects

        streams = open(gt_file, 'rb').read()
        objects = metrics_pb2.Objects()
        objects.ParseFromString(bytearray(streams))
        gt_objects = objects
        no_label_zone_objects = gt_objects.no_label_zone_objects

        def set_config():
            config = metrics_pb2.Config()
            config_text = """
            num_desired_score_cutoffs: 11
            breakdown_generator_ids: OBJECT_TYPE
            difficulties {
            }
            matcher_type: TYPE_HUNGARIAN
            iou_thresholds: 0.5
            iou_thresholds: 0.5
            iou_thresholds: 0.5
            iou_thresholds: 0.5
            iou_thresholds: 0.5
            box_type: TYPE_3D
            """
            text_format.Merge(config_text, config)
            return config

        def check_in_no_label_zone():
            return False

        def filter_by_camera_fov(center_x, center_y):
            assert isinstance(fov, list)
            fov_neg_angle, fov_pos_angle = fov[0], fov[1]
            fov_neg_cos, fov_pos_cos = np.cos(
                fov_neg_angle / 180 * np.pi), np.cos(fov_pos_angle / 180 *
                                                     np.pi)
            x, y = center_x, center_y
            fov_flag = np.logical_or(
                (x / np.linalg.norm(
                    (x, y), ord=2, axis=0) > fov_neg_cos) & (y < 0),
                (x / np.linalg.norm(
                    (x, y), ord=2, axis=0) > fov_pos_cos) & (y > 0))
            return fov_flag

        config = set_config()

        frame_ids_dict = {}  # key:frame_name value:frame_id
        prediction_frame_id = []
        prediction_bbox = []
        prediction_type = []
        prediction_score = []
        prediction_overlap_nlz = []

        for _object in pred_objects.objects:
            context_name = _object.context_name
            frame_timestamp_micros = _object.frame_timestamp_micros
            label = _object.object
            score = _object.score
            frame_id = '%s_%s' % (context_name, frame_timestamp_micros)
            if frame_id not in frame_ids_dict:
                frame_ids_dict[frame_id] = len(frame_ids_dict) + 1
            prediction_frame_id.append(frame_ids_dict[frame_id])

            prediction_bbox.append([
                label.box.center_x, label.box.center_y, label.box.center_z,
                label.box.length, label.box.width, label.box.height,
                label.box.heading
            ])
            prediction_type.append(label.type)
            prediction_score.append(score)
            prediction_overlap_nlz.append(check_in_no_label_zone())

        ground_truth_frame_id = []
        ground_truth_bbox = []
        ground_truth_type = []
        ground_truth_difficulty = []
        for _object in gt_objects.objects:
            context_name = _object.context_name
            frame_timestamp_micros = _object.frame_timestamp_micros
            label = _object.object
            frame_id = '%s_%s' % (context_name, frame_timestamp_micros)
            num_lidar_points_in_box = label.num_lidar_points_in_box
            # detection_difficulty_level = _object.detection_difficulty_level
            detection_difficulty_level = 0
            if frame_id not in frame_ids_dict:
                continue
            if num_lidar_points_in_box < ignore_box_by_point_num:
                continue
            in_fov = True
            if fov_only:
                in_fov = filter_by_camera_fov(center_x=label.box.center_x,
                                              center_y=label.box.center_y)
            if not in_fov:
                continue

            ground_truth_frame_id.append(frame_ids_dict[frame_id])
            ground_truth_bbox.append([
                label.box.center_x, label.box.center_y, label.box.center_z,
                label.box.length, label.box.width, label.box.height,
                label.box.heading
            ])
            ground_truth_type.append(label.type)
            ground_truth_difficulty.append(detection_difficulty_level)

        prediction_frame_id = tf.convert_to_tensor(prediction_frame_id,
                                                   dtype=tf.int64)
        prediction_bbox = tf.convert_to_tensor(prediction_bbox,
                                               dtype=tf.float32)
        prediction_type = tf.convert_to_tensor(prediction_type, dtype=tf.int64)
        prediction_score = tf.convert_to_tensor(prediction_score,
                                                dtype=tf.float32)
        prediction_overlap_nlz = tf.convert_to_tensor(prediction_overlap_nlz,
                                                      dtype=tf.bool)
        ground_truth_frame_id = tf.convert_to_tensor(ground_truth_frame_id,
                                                     dtype=tf.int64)
        ground_truth_bbox = tf.convert_to_tensor(ground_truth_bbox,
                                                 dtype=tf.float32)
        ground_truth_type = tf.convert_to_tensor(ground_truth_type,
                                                 dtype=tf.int64)
        ground_truth_difficulty = tf.convert_to_tensor(ground_truth_difficulty,
                                                       dtype=tf.int64)
        ground_truth_speed = None
        recall_at_precision = None
        results = \
            detection_metrics.get_detection_metric_ops(
                config,
                prediction_frame_id,
                prediction_bbox,
                prediction_type,
                prediction_score,
                prediction_overlap_nlz,
                ground_truth_frame_id,
                ground_truth_bbox,
                ground_truth_type,
                ground_truth_difficulty,
                ground_truth_speed,
                recall_at_precision,
            )
        return results