def sanity_checks(offset_list, Y_list, query_annots, ibs): nfeat_list = np.diff(offset_list) for Y, nfeat in ut.ProgIter(zip(Y_list, nfeat_list), 'checking'): assert nfeat == sum(ut.lmap(len, Y.fxs_list)) if False: # Visualize queries # Look at the standard query images here # http://www.robots.ox.ac.uk:5000/~vgg/publications/2007/Philbin07/philbin07.pdf from wbia.viz import viz_chip import wbia.plottool as pt pt.qt4ensure() fnum = 1 pnum_ = pt.make_pnum_nextgen(len(query_annots.aids) // 5, 5) for aid in ut.ProgIter(query_annots.aids): pnum = pnum_() viz_chip.show_chip( ibs, aid, in_image=True, annote=False, notitle=True, draw_lbls=False, fnum=fnum, pnum=pnum, )
def plot_gps_html(gps_list): """ Plots gps coordinates on a map projection InstallBasemap: sudo apt-get install libgeos-dev pip install git+https://github.com/matplotlib/basemap http://matplotlib.org/basemap/users/examples.html pip install gmplot sudo apt-get install netcdf-bin sudo apt-get install libnetcdf-dev pip install netCDF4 Ignore: pip install git+git://github.com/myuser/foo.git@v123 Example: >>> # DISABLE_DOCTEST >>> from wbia.algo.preproc.preproc_occurrence import * # NOQA >>> import wbia >>> ibs = wbia.opendb(defaultdb='testdb1') >>> images = ibs.images() >>> # Setup GPS points to draw >>> print('Setup GPS points') >>> gps_list_ = np.array(images.gps2) >>> unixtime_list_ = np.array(images.unixtime2) >>> has_gps = np.all(np.logical_not(np.isnan(gps_list_)), axis=1) >>> has_unixtime = np.logical_not(np.isnan(unixtime_list_)) >>> isvalid = np.logical_and(has_gps, has_unixtime) >>> gps_list = gps_list_.compress(isvalid, axis=0) >>> unixtime_list = unixtime_list_.compress(isvalid) # NOQA >>> plot_image_gps(gps_list) """ import wbia.plottool as pt import gmplot import matplotlib as mpl import vtool as vt pt.qt4ensure() lat = gps_list.T[0] lon = gps_list.T[1] # Get extent of bbox = vt.bbox_from_verts(gps_list) centerx, centery = vt.bbox_center(bbox) gmap = gmplot.GoogleMapPlotter(centerx, centery, 13) color = mpl.colors.rgb2hex(pt.ORANGE) gmap.scatter(lat, lon, color=color, size=100, marker=False) gmap.draw('mymap.html') ut.startfile('mymap.html')
def fix_splits_interaction(ibs): """ python -m wbia fix_splits_interaction --show Example: >>> # DISABLE_DOCTEST GGR >>> from wbia.other.dbinfo import * # NOQA >>> import wbia >>> dbdir = '/media/danger/GGR/GGR-IBEIS' >>> dbdir = dbdir if ut.checkpath(dbdir) else ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS') >>> ibs = wbia.opendb(dbdir=dbdir, allow_newdir=False) >>> import wbia.guitool as gt >>> gt.ensure_qtapp() >>> win = fix_splits_interaction(ibs) >>> ut.quit_if_noshow() >>> import wbia.plottool as pt >>> gt.qtapp_loop(qwin=win) """ split_props = {'splitcase', 'photobomb'} all_annot_groups = ibs._annot_groups( ibs.group_annots_by_name(ibs.get_valid_aids())[0]) all_has_split = [ len(split_props.intersection(ut.flatten(tags))) > 0 for tags in all_annot_groups.match_tags ] tosplit_annots = ut.compress(all_annot_groups.annots_list, all_has_split) tosplit_annots = ut.take(tosplit_annots, ut.argsort(ut.lmap(len, tosplit_annots)))[::-1] if ut.get_argflag('--reverse'): tosplit_annots = tosplit_annots[::-1] logger.info('len(tosplit_annots) = %r' % (len(tosplit_annots), )) aids_list = [a.aids for a in tosplit_annots] from wbia.algo.graph import graph_iden from wbia.viz import viz_graph2 import wbia.guitool as gt import wbia.plottool as pt pt.qt4ensure() gt.ensure_qtapp() for aids in ut.InteractiveIter(aids_list): infr = graph_iden.AnnotInference(ibs, aids) infr.initialize_graph() win = viz_graph2.AnnotGraphWidget(infr=infr, use_image=False, init_mode='rereview') win.populate_edge_model() win.show() return win
def gridsearch_ratio_thresh(matches): import sklearn import sklearn.metrics import vtool as vt # Param search for vsone import wbia.plottool as pt pt.qt4ensure() skf = sklearn.model_selection.StratifiedKFold(n_splits=10, random_state=119372) y = np.array([m.annot1['nid'] == m.annot2['nid'] for m in matches]) basis = {'ratio_thresh': np.linspace(0.6, 0.7, 50).tolist()} grid = ut.all_dict_combinations(basis) xdata = np.array(ut.take_column(grid, 'ratio_thresh')) def _ratio_thresh(y_true, match_list): # Try and find optional ratio threshold auc_list = [] for cfgdict in ut.ProgIter(grid, lbl='gridsearch'): y_score = [ match.fs.compress(match.ratio_test_flags(cfgdict)).sum() for match in match_list ] auc = sklearn.metrics.roc_auc_score(y_true, y_score) auc_list.append(auc) auc_list = np.array(auc_list) return auc_list auc_list = _ratio_thresh(y, matches) pt.plot(xdata, auc_list) subx, suby = vt.argsubmaxima(auc_list, xdata) best_ratio_thresh = subx[suby.argmax()] skf_results = [] y_true = y for train_idx, test_idx in skf.split(matches, y): match_list_ = ut.take(matches, train_idx) y_true = y.take(train_idx) auc_list = _ratio_thresh(y_true, match_list_) subx, suby = vt.argsubmaxima(auc_list, xdata, maxima_thresh=0.8) best_ratio_thresh = subx[suby.argmax()] skf_results.append(best_ratio_thresh) logger.info('skf_results.append = %r' % (np.mean(skf_results),)) import utool utool.embed()
def show_data_image(data_uri_order, i, offset_list, all_kpts, all_vecs): """ i = 12 """ import vtool as vt from os.path import join imgdir = ut.truepath('/raid/work/Oxford/oxbuild_images') gpath = join(imgdir, data_uri_order[i] + '.jpg') image = vt.imread(gpath) import wbia.plottool as pt pt.qt4ensure() # pt.imshow(image) left = offset_list[i] right = offset_list[i + 1] kpts = all_kpts[left:right] vecs = all_vecs[left:right] pt.interact_keypoints.ishow_keypoints(image, kpts, vecs, ori=False, ell_alpha=0.4, color='distinct')
def dans_splits(ibs): """ python -m wbia dans_splits --show Example: >>> # DISABLE_DOCTEST GGR >>> from wbia.other.dbinfo import * # NOQA >>> import wbia >>> dbdir = '/media/danger/GGR/GGR-IBEIS' >>> dbdir = dbdir if ut.checkpath(dbdir) else ut.truepath('~/lev/media/danger/GGR/GGR-IBEIS') >>> ibs = wbia.opendb(dbdir=dbdir, allow_newdir=False) >>> import wbia.guitool as gt >>> gt.ensure_qtapp() >>> win = dans_splits(ibs) >>> ut.quit_if_noshow() >>> import wbia.plottool as pt >>> gt.qtapp_loop(qwin=win) """ # pair = 9262, 932 dans_aids = [ 26548, 2190, 9418, 29965, 14738, 26600, 3039, 2742, 8249, 20154, 8572, 4504, 34941, 4040, 7436, 31866, 28291, 16009, 7378, 14453, 2590, 2738, 22442, 26483, 21640, 19003, 13630, 25395, 20015, 14948, 21429, 19740, 7908, 23583, 14301, 26912, 30613, 19719, 21887, 8838, 16184, 9181, 8649, 8276, 14678, 21950, 4925, 13766, 12673, 8417, 2018, 22434, 21149, 14884, 5596, 8276, 14650, 1355, 21725, 21889, 26376, 2867, 6906, 4890, 21524, 6690, 14738, 1823, 35525, 9045, 31723, 2406, 5298, 15627, 31933, 19535, 9137, 21002, 2448, 32454, 12615, 31755, 20015, 24573, 32001, 23637, 3192, 3197, 8702, 1240, 5596, 33473, 23874, 9558, 9245, 23570, 33075, 23721, 24012, 33405, 23791, 19498, 33149, 9558, 4971, 34183, 24853, 9321, 23691, 9723, 9236, 9723, 21078, 32300, 8700, 15334, 6050, 23277, 31164, 14103, 21231, 8007, 10388, 33387, 4319, 26880, 8007, 31164, 32300, 32140, ] is_hyrbid = [ # NOQA 7123, 7166, 7157, 7158, ] needs_mask = [26836, 29742] # NOQA justfine = [19862] # NOQA annots = ibs.annots(dans_aids) unique_nids = ut.unique(annots.nids) grouped_aids = ibs.get_name_aids(unique_nids) annot_groups = ibs._annot_groups(grouped_aids) split_props = {'splitcase', 'photobomb'} needs_tag = [ len(split_props.intersection(ut.flatten(tags))) == 0 for tags in annot_groups.match_tags ] num_needs_tag = sum(needs_tag) num_had_split = len(needs_tag) - num_needs_tag logger.info('num_had_split = %r' % (num_had_split, )) logger.info('num_needs_tag = %r' % (num_needs_tag, )) # all_annot_groups = ibs._annot_groups(ibs.group_annots_by_name(ibs.get_valid_aids())[0]) # all_has_split = [len(split_props.intersection(ut.flatten(tags))) > 0 for tags in all_annot_groups.match_tags] # num_nondan = sum(all_has_split) - num_had_split # logger.info('num_nondan = %r' % (num_nondan,)) from wbia.algo.graph import graph_iden from wbia.viz import viz_graph2 import wbia.guitool as gt import wbia.plottool as pt pt.qt4ensure() gt.ensure_qtapp() aids_list = ut.compress(grouped_aids, needs_tag) aids_list = [a for a in aids_list if len(a) > 1] logger.info('len(aids_list) = %r' % (len(aids_list), )) for aids in aids_list: infr = graph_iden.AnnotInference(ibs, aids) infr.initialize_graph() win = viz_graph2.AnnotGraphWidget(infr=infr, use_image=False, init_mode='rereview') win.populate_edge_model() win.show() return win assert False
def get_injured_sharks(): """ >>> from wbia.scripts.getshark import * # NOQA """ import requests url = 'http://www.whaleshark.org/getKeywordImages.jsp' resp = requests.get(url) assert resp.status_code == 200 keywords = resp.json()['keywords'] key_list = ut.take_column(keywords, 'indexName') key_to_nice = {k['indexName']: k['readableName'] for k in keywords} injury_patterns = [ 'injury', 'net', 'hook', 'trunc', 'damage', 'scar', 'nicks', 'bite', ] injury_keys = [ key for key in key_list if any([pat in key for pat in injury_patterns]) ] noninjury_keys = ut.setdiff(key_list, injury_keys) injury_nice = ut.lmap(lambda k: key_to_nice[k], injury_keys) # NOQA noninjury_nice = ut.lmap(lambda k: key_to_nice[k], noninjury_keys) # NOQA key_list = injury_keys keyed_images = {} for key in ut.ProgIter(key_list, lbl='reading index', bs=True): key_url = url + '?indexName={indexName}'.format(indexName=key) key_resp = requests.get(key_url) assert key_resp.status_code == 200 key_imgs = key_resp.json()['images'] keyed_images[key] = key_imgs key_hist = {key: len(imgs) for key, imgs in keyed_images.items()} key_hist = ut.sort_dict(key_hist, 'vals') logger.info(ut.repr3(key_hist)) nice_key_hist = ut.map_dict_keys(lambda k: key_to_nice[k], key_hist) nice_key_hist = ut.sort_dict(nice_key_hist, 'vals') logger.info(ut.repr3(nice_key_hist)) key_to_urls = { key: ut.take_column(vals, 'url') for key, vals in keyed_images.items() } overlaps = {} import itertools overlap_img_list = [] for k1, k2 in itertools.combinations(key_to_urls.keys(), 2): overlap_imgs = ut.isect(key_to_urls[k1], key_to_urls[k2]) num_overlap = len(overlap_imgs) overlaps[(k1, k2)] = num_overlap overlaps[(k1, k1)] = len(key_to_urls[k1]) if num_overlap > 0: # logger.info('[%s][%s], overlap=%r' % (k1, k2, num_overlap)) overlap_img_list.extend(overlap_imgs) all_img_urls = list(set(ut.flatten(key_to_urls.values()))) num_all = len(all_img_urls) # NOQA logger.info('num_all = %r' % (num_all, )) # Determine super-categories categories = ['nicks', 'scar', 'trunc'] # Force these keys into these categories key_to_cat = {'scarbite': 'other_injury'} cat_to_keys = ut.ddict(list) for key in key_to_urls.keys(): flag = 1 if key in key_to_cat: cat = key_to_cat[key] cat_to_keys[cat].append(key) continue for cat in categories: if cat in key: cat_to_keys[cat].append(key) flag = 0 if flag: cat = 'other_injury' cat_to_keys[cat].append(key) cat_urls = ut.ddict(list) for cat, keys in cat_to_keys.items(): for key in keys: cat_urls[cat].extend(key_to_urls[key]) cat_hist = {} for cat in list(cat_urls.keys()): cat_urls[cat] = list(set(cat_urls[cat])) cat_hist[cat] = len(cat_urls[cat]) logger.info(ut.repr3(cat_to_keys)) logger.info(ut.repr3(cat_hist)) key_to_cat = dict([(val, key) for key, vals in cat_to_keys.items() for val in vals]) # ingestset = { # '__class__': 'ImageSet', # 'images': ut.ddict(dict) # } # for key, key_imgs in keyed_images.items(): # for imgdict in key_imgs: # url = imgdict['url'] # encid = imgdict['correspondingEncounterNumber'] # # Make structure # encdict = encounters[encid] # encdict['__class__'] = 'Encounter' # imgdict = ut.delete_keys(imgdict.copy(), ['correspondingEncounterNumber']) # imgdict['__class__'] = 'Image' # cat = key_to_cat[key] # annotdict = {'relative_bbox': [.01, .01, .98, .98], 'tags': [cat, key]} # annotdict['__class__'] = 'Annotation' # # Ensure structures exist # encdict['images'] = encdict.get('images', []) # imgdict['annots'] = imgdict.get('annots', []) # # Add an image to this encounter # encdict['images'].append(imgdict) # # Add an annotation to this image # imgdict['annots'].append(annotdict) # # http://springbreak.wildbook.org/rest/org.ecocean.Encounter/1111 # get_enc_url = 'http://www.whaleshark.org/rest/org.ecocean.Encounter/%s' % (encid,) # resp = requests.get(get_enc_url) # logger.info(ut.repr3(encdict)) # logger.info(ut.repr3(encounters)) # Download the files to the local disk # fpath_list = all_urls = ut.unique( ut.take_column( ut.flatten( ut.dict_subset(keyed_images, ut.flatten(cat_to_keys.values())).values()), 'url', )) dldir = ut.truepath('~/tmpsharks') from os.path import commonprefix, basename # NOQA prefix = commonprefix(all_urls) suffix_list = [url_[len(prefix):] for url_ in all_urls] fname_list = [suffix.replace('/', '--') for suffix in suffix_list] fpath_list = [] for url, fname in ut.ProgIter(zip(all_urls, fname_list), lbl='downloading imgs', freq=1): fpath = ut.grab_file_url(url, download_dir=dldir, fname=fname, verbose=False) fpath_list.append(fpath) # Make sure we keep orig info # url_to_keys = ut.ddict(list) url_to_info = ut.ddict(dict) for key, imgdict_list in keyed_images.items(): for imgdict in imgdict_list: url = imgdict['url'] info = url_to_info[url] for k, v in imgdict.items(): info[k] = info.get(k, []) info[k].append(v) info['keys'] = info.get('keys', []) info['keys'].append(key) # url_to_keys[url].append(key) info_list = ut.take(url_to_info, all_urls) for info in info_list: if len(set(info['correspondingEncounterNumber'])) > 1: assert False, 'url with two different encounter nums' # Combine duplicate tags hashid_list = [ ut.get_file_uuid(fpath_, stride=8) for fpath_ in ut.ProgIter(fpath_list, bs=True) ] groupxs = ut.group_indices(hashid_list)[1] # Group properties by duplicate images # groupxs = [g for g in groupxs if len(g) > 1] fpath_list_ = ut.take_column(ut.apply_grouping(fpath_list, groupxs), 0) url_list_ = ut.take_column(ut.apply_grouping(all_urls, groupxs), 0) info_list_ = [ ut.map_dict_vals(ut.flatten, ut.dict_accum(*info_)) for info_ in ut.apply_grouping(info_list, groupxs) ] encid_list_ = [ ut.unique(info_['correspondingEncounterNumber'])[0] for info_ in info_list_ ] keys_list_ = [ut.unique(info_['keys']) for info_ in info_list_] cats_list_ = [ut.unique(ut.take(key_to_cat, keys)) for keys in keys_list_] clist = ut.ColumnLists({ 'gpath': fpath_list_, 'url': url_list_, 'encid': encid_list_, 'key': keys_list_, 'cat': cats_list_, }) # for info_ in ut.apply_grouping(info_list, groupxs): # info = ut.dict_accum(*info_) # info = ut.map_dict_vals(ut.flatten, info) # x = ut.unique(ut.flatten(ut.dict_accum(*info_)['correspondingEncounterNumber'])) # if len(x) > 1: # info = info.copy() # del info['keys'] # logger.info(ut.repr3(info)) flags = ut.lmap(ut.fpath_has_imgext, clist['gpath']) clist = clist.compress(flags) import wbia ibs = wbia.opendb('WS_Injury', allow_newdir=True) gid_list = ibs.add_images(clist['gpath']) clist['gid'] = gid_list failed_flags = ut.flag_None_items(clist['gid']) logger.info('# failed %s' % (sum(failed_flags), )) passed_flags = ut.not_list(failed_flags) clist = clist.compress(passed_flags) ut.assert_all_not_None(clist['gid']) # ibs.get_image_uris_original(clist['gid']) ibs.set_image_uris_original(clist['gid'], clist['url'], overwrite=True) # ut.zipflat(clist['cat'], clist['key']) if False: # Can run detection instead clist['tags'] = ut.zipflat(clist['cat']) aid_list = ibs.use_images_as_annotations(clist['gid'], adjust_percent=0.01, tags_list=clist['tags']) aid_list import wbia.plottool as pt from wbia import core_annots pt.qt4ensure() # annots = ibs.annots() # aids = [1, 2] # ibs.depc_annot.get('hog', aids , 'hog') # ibs.depc_annot.get('chip', aids, 'img') for aid in ut.InteractiveIter(ibs.get_valid_aids()): hogs = ibs.depc_annot.d.get_hog_hog([aid]) chips = ibs.depc_annot.d.get_chips_img([aid]) chip = chips[0] hogimg = core_annots.make_hog_block_image(hogs[0]) pt.clf() pt.imshow(hogimg, pnum=(1, 2, 1)) pt.imshow(chip, pnum=(1, 2, 2)) fig = pt.gcf() fig.show() fig.canvas.draw() # logger.info(len(groupxs)) # if False: # groupxs = ut.find_duplicate_items(ut.lmap(basename, suffix_list)).values() # logger.info(ut.repr3(ut.apply_grouping(all_urls, groupxs))) # # FIX # for fpath, fname in zip(fpath_list, fname_list): # if ut.checkpath(fpath): # ut.move(fpath, join(dirname(fpath), fname)) # logger.info('fpath = %r' % (fpath,)) # import wbia # from wbia.dbio import ingest_dataset # dbdir = wbia.sysres.lookup_dbdir('WS_ALL') # self = ingest_dataset.Ingestable2(dbdir) if False: # Show overlap matrix import wbia.plottool as pt import pandas as pd import numpy as np dict_ = overlaps s = pd.Series(dict_, index=pd.MultiIndex.from_tuples(overlaps)) df = s.unstack() lhs, rhs = df.align(df.T) df = lhs.add(rhs, fill_value=0).fillna(0) label_texts = df.columns.values def label_ticks(label_texts): import wbia.plottool as pt truncated_labels = [repr(lbl[0:100]) for lbl in label_texts] ax = pt.gca() ax.set_xticks(list(range(len(label_texts)))) ax.set_xticklabels(truncated_labels) [lbl.set_rotation(-55) for lbl in ax.get_xticklabels()] [ lbl.set_horizontalalignment('left') for lbl in ax.get_xticklabels() ] # xgrid, ygrid = np.meshgrid(range(len(label_texts)), range(len(label_texts))) # pt.plot_surface3d(xgrid, ygrid, disjoint_mat) ax.set_yticks(list(range(len(label_texts)))) ax.set_yticklabels(truncated_labels) [ lbl.set_horizontalalignment('right') for lbl in ax.get_yticklabels() ] [ lbl.set_verticalalignment('center') for lbl in ax.get_yticklabels() ] # [lbl.set_rotation(20) for lbl in ax.get_yticklabels()] # df = df.sort(axis=0) # df = df.sort(axis=1) sortx = np.argsort(df.sum(axis=1).values)[::-1] df = df.take(sortx, axis=0) df = df.take(sortx, axis=1) fig = pt.figure(fnum=1) fig.clf() mat = df.values.astype(np.int32) mat[np.diag_indices(len(mat))] = 0 vmax = mat[(1 - np.eye(len(mat))).astype(np.bool)].max() import matplotlib.colors norm = matplotlib.colors.Normalize(vmin=0, vmax=vmax, clip=True) pt.plt.imshow(mat, cmap='hot', norm=norm, interpolation='none') pt.plt.colorbar() pt.plt.grid('off') label_ticks(label_texts) fig.tight_layout() # overlap_df = pd.DataFrame.from_dict(overlap_img_list) class TmpImage(ut.NiceRepr): pass from skimage.feature import hog from skimage import data, color, exposure import wbia.plottool as pt image2 = color.rgb2gray(data.astronaut()) # NOQA fpath = './GOPR1120.JPG' import vtool as vt for fpath in [fpath]: """ http://scikit-image.org/docs/dev/auto_examples/plot_hog.html """ image = vt.imread(fpath, grayscale=True) image = pt.color_funcs.to_base01(image) fig = pt.figure(fnum=2) fd, hog_image = hog( image, orientations=8, pixels_per_cell=(16, 16), cells_per_block=(1, 1), visualise=True, ) fig, (ax1, ax2) = pt.plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True) ax1.axis('off') ax1.imshow(image, cmap=pt.plt.cm.gray) ax1.set_title('Input image') ax1.set_adjustable('box-forced') # Rescale histogram for better display hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02)) ax2.axis('off') ax2.imshow(hog_image_rescaled, cmap=pt.plt.cm.gray) ax2.set_title('Histogram of Oriented Gradients') ax1.set_adjustable('box-forced') pt.plt.show()
def detect_sharks(ibs, gids): # import wbia # ibs = wbia.opendb('WS_ALL') config = { 'algo': 'yolo', 'sensitivity': 0.2, 'config_filepath': ut.truepath('~/work/WS_ALL/localizer_backup/detect.yolo.2.cfg'), 'weight_filepath': ut.truepath( '~/work/WS_ALL/localizer_backup/detect.yolo.2.39000.weights'), 'class_filepath': ut.truepath( '~/work/WS_ALL/localizer_backup/detect.yolo.2.cfg.classes'), } depc = ibs.depc_image # imgsets = ibs.imagesets(text='Injured Sharks') # images = ibs.images(imgsets.gids[0]) images = ibs.images(gids) images = images.compress([ext not in ['.gif'] for ext in images.exts]) gid_list = images.gids # result is a tuple: # (score, bbox_list, theta_list, conf_list, class_list) results_list = depc.get_property('localizations', gid_list, None, config=config) results_list2 = [] multi_gids = [] failed_gids = [] # ibs.set_image_imagesettext(failed_gids, ['Fixme'] * len(failed_gids)) ibs.set_image_imagesettext(multi_gids, ['Fixme2'] * len(multi_gids)) failed_gids for gid, res in zip(gid_list, results_list): score, bbox_list, theta_list, conf_list, class_list = res if len(bbox_list) == 0: failed_gids.append(gid) elif len(bbox_list) == 1: results_list2.append((gid, bbox_list, theta_list)) elif len(bbox_list) > 1: multi_gids.append(gid) idx = conf_list.argmax() res2 = (gid, bbox_list[idx:idx + 1], theta_list[idx:idx + 1]) results_list2.append(res2) ut.dict_hist(([t[1].shape[0] for t in results_list])) localized_imgs = ibs.images(ut.take_column(results_list2, 0)) assert all([len(a) == 1 for a in localized_imgs.aids]) old_annots = ibs.annots(ut.flatten(localized_imgs.aids)) # old_tags = old_annots.case_tags # Override old bboxes import numpy as np bboxes = np.array(ut.take_column(results_list2, 1))[:, 0, :] ibs.set_annot_bboxes(old_annots.aids, bboxes) if False: import wbia.plottool as pt pt.qt4ensure() inter = pt.MultiImageInteraction( ibs.get_image_paths(ut.take_column(results_list2, 0)), bboxes_list=ut.take_column(results_list2, 1), ) inter.dump_to_disk('shark_loc', num=50, prefix='shark_loc') inter.start() inter = pt.MultiImageInteraction(ibs.get_image_paths(failed_gids)) inter.start() inter = pt.MultiImageInteraction(ibs.get_image_paths(multi_gids)) inter.start()