def __init__(self,
                 measurement_runner: MeasurementRunner,
                 allocator: Allocator,
                 allocations_storage: Storage = DEFAULT_STORAGE,
                 anomalies_storage: Storage = DEFAULT_STORAGE,
                 rdt_mb_control_required: bool = False,
                 rdt_cache_control_required: bool = False,
                 remove_all_resctrl_groups: bool = False):

        if not measurement_runner._allocation_configuration:
            measurement_runner._allocation_configuration = AllocationConfiguration(
            )

        self._measurement_runner = measurement_runner

        # Allocation specific.
        self._allocator = allocator
        self._allocations_storage = allocations_storage

        self._rdt_mb_control_required = rdt_mb_control_required
        self._rdt_cache_control_required = rdt_cache_control_required

        # Anomaly.
        self._anomalies_storage = anomalies_storage
        self._anomalies_statistics = AnomalyStatistics()

        # Internal allocation statistics
        self._allocations_counter = 0
        self._allocations_errors = 0

        self._remove_all_resctrl_groups = remove_all_resctrl_groups

        self._measurement_runner._set_iterate_body_callback(self._iterate_body)
        self._measurement_runner._set_initialize_rdt_callback(
            self._initialize_rdt)
def test_measurements_wait(sleep_mock):
    with patch('time.time', return_value=1):
        runner = MeasurementRunner(node=Mock(spec=MesosNode,
                                             get_tasks=Mock(return_value=[])),
                                   metrics_storage=Mock(spec=storage.Storage,
                                                        store=Mock()),
                                   rdt_enabled=False,
                                   extra_labels={})

        runner._initialize()
        runner._iterate()
        sleep_mock.assert_called_once_with(1.0)

    with patch('time.time', return_value=1.3):
        runner._iterate()
        sleep_mock.assert_called_with(0.7)
        assert runner._last_iteration == 1.3

    with patch('time.time', return_value=2.5):
        runner._iterate()
        sleep_mock.assert_called_with(0)
Example #3
0
def test_measurements_runner_init_and_checks(rdt_enabled, resctrl_available,
                                             monitoring_available, access_ok,
                                             ok):
    # auto rdt
    runner = MeasurementRunner(
        node=Mock(spec=MesosNode),
        metrics_storage=Mock(spec=storage.Storage),
        rdt_enabled=rdt_enabled,
    )

    platform_mock = Mock(rdt_information=Mock(is_monitoring_enabled=Mock(
        return_value=monitoring_available)))

    with patch('wca.resctrl.check_resctrl', return_value=resctrl_available), \
            patch('wca.security.are_privileges_sufficient', return_value=access_ok), \
            patch('wca.platforms.collect_platform_information',
                  return_value=(platform_mock, None, None)):
        if ok:
            # ok no error
            assert runner._initialize() is None
        else:
            # fails
            assert runner._initialize() == 1
Example #4
0
def test_rdt_initialize(
    rdt_max_values_mock,
    cleanup_resctrl_mock,
    default_rdt_l3,
    default_rdt_mb,
    config_rdt_mb_control_enabled,
    config_rdt_cache_control_enabled,
    platform_rdt_mb_control_enabled,
    platform_rdt_cache_control_enabled,
    expected_error,
    expected_final_rdt_mb_control_enabled_with_value,
    expected_cleanup_arguments,
):
    allocation_configuration = AllocationConfiguration(
        default_rdt_mb=default_rdt_mb, default_rdt_l3=default_rdt_l3)
    runner = AllocationRunner(
        measurement_runner=MeasurementRunner(
            node=Mock(spec=Node),
            interval=1,
            rdt_enabled=True,
            metrics_storage=Mock(spec=Storage),
            allocation_configuration=allocation_configuration,
        ),
        allocator=Mock(spec=Allocator),
        anomalies_storage=Mock(spec=Storage),
        allocations_storage=Mock(spec=Storage),
        rdt_mb_control_required=config_rdt_mb_control_enabled,
        rdt_cache_control_required=config_rdt_cache_control_enabled)

    with patch(
            'tests.testing.platform_mock.rdt_information',
            Mock(
                spec=RDTInformation,
                cbm_mask='fff',
                min_cbm_bits='2',
                mb_min_bandwidth=10,
                mb_bandwidth_gran=10,
                rdt_mb_control_enabled=platform_rdt_mb_control_enabled,
                rdt_cache_control_enabled=platform_rdt_cache_control_enabled)):
        assert runner._initialize_rdt() is not expected_error

    if expected_final_rdt_mb_control_enabled_with_value:
        assert runner._rdt_mb_control_required == expected_final_rdt_mb_control_enabled_with_value

    if expected_cleanup_arguments:
        cleanup_resctrl_mock.assert_called_with(*expected_cleanup_arguments)
    else:
        assert cleanup_resctrl_mock.call_count == 0
def test_measurements_runner(subcgroups):
    # Node mock
    t1 = redis_task_with_default_labels('t1', subcgroups)
    t2 = redis_task_with_default_labels('t2', subcgroups)

    runner = MeasurementRunner(
        node=Mock(spec=MesosNode, get_tasks=Mock(return_value=[t1, t2])),
        metrics_storage=Mock(spec=storage.Storage, store=Mock()),
        rdt_enabled=False,
        extra_labels=dict(
            extra_label='extra_value')  # extra label with some extra value
    )
    runner._wait = Mock()
    # Mock to finish after one iteration.
    runner._initialize()
    runner._iterate()

    # Check output metrics.
    got_metrics = runner._metrics_storage.store.call_args[0][0]

    # Internal wca metrics are generated (wca is running, number of task under control,
    # memory usage and profiling information)
    assert_metric(got_metrics, 'wca_up', dict(extra_label='extra_value'))
    assert_metric(got_metrics, 'wca_tasks', expected_metric_value=2)
    # wca & its children memory usage (in bytes)
    assert_metric(got_metrics,
                  'wca_memory_usage_bytes',
                  expected_metric_value=WCA_MEMORY_USAGE * 2 * 1024)

    # Measurements metrics about tasks, based on get_measurements mocks.
    cpu_usage = TASK_CPU_USAGE * (len(subcgroups) if subcgroups else 1)
    assert_metric(got_metrics,
                  'cpu_usage',
                  dict(task_id=t1.task_id),
                  expected_metric_value=cpu_usage)
    assert_metric(got_metrics,
                  'cpu_usage',
                  dict(task_id=t2.task_id),
                  expected_metric_value=cpu_usage)

    # Test whether application and application_version_name were properly generated using
    #   default runner._task_label_generators defined in constructor of MeasurementsRunner.
    assert_metric(got_metrics, 'cpu_usage', {
        'application': t1.name,
        'application_version_name': ''
    })

    # Test whether `initial_task_cpu_assignment` label is attached to task metrics.
    assert_metric(got_metrics, 'cpu_usage',
                  {'initial_task_cpu_assignment': '8.0'})
Example #6
0
def test_measurements_runner(subcgroups):
    # Node mock
    t1 = redis_task_with_default_labels('t1', subcgroups)
    t2 = redis_task_with_default_labels('t2', subcgroups)

    runner = MeasurementRunner(node=Mock(
        spec=MesosNode, get_tasks=Mock(return_value=[t1, t2])),
                               metrics_storage=Mock(spec=storage.Storage,
                                                    store=Mock()),
                               rdt_enabled=False,
                               gather_hw_mm_topology=False,
                               extra_labels=dict(extra_label='extra_value'))
    runner._wait = Mock()
    # Mock to finish after one iteration.
    runner._initialize()
    runner._iterate()

    # Check output metrics.
    got_metrics = runner._metrics_storage.store.call_args[0][0]

    # Internal wca metrics are generated (wca is running, number of task under control,
    # memory usage and profiling information)
    assert_metric(got_metrics, MetricName.WCA_UP,
                  dict(extra_label='extra_value'))
    assert_metric(got_metrics, MetricName.WCA_TASKS, expected_metric_value=2)
    # wca & its children memory usage (in bytes)
    assert_metric(got_metrics,
                  MetricName.WCA_MEM_USAGE_BYTES,
                  expected_metric_value=WCA_MEMORY_USAGE * 2 * 1024)

    # Measurements metrics about tasks, based on get_measurements mocks.
    cpu_usage = TASK_CPU_USAGE * (len(subcgroups) if subcgroups else 1)
    assert_metric(got_metrics,
                  MetricName.TASK_CPU_USAGE_SECONDS,
                  dict(task_id=t1.task_id),
                  expected_metric_value=cpu_usage)
    assert_metric(got_metrics,
                  MetricName.TASK_CPU_USAGE_SECONDS,
                  dict(task_id=t2.task_id),
                  expected_metric_value=cpu_usage)
Example #7
0
def test_detection_runner(reset_counters_mock, subcgroups):
    # Tasks mock
    t1 = redis_task_with_default_labels('t1', subcgroups)
    t2 = redis_task_with_default_labels('t2', subcgroups)

    # Detector mock - simulate returning one anomaly and additional metric
    detector_mock = Mock(
        spec=AnomalyDetector,
        detect=Mock(return_value=(
            [
                anomaly(t1.task_id, [t2.task_id],
                        metrics=[metric('contention_related_metric')])
            ],  # one anomaly + related metric
            [metric('extra_metric_from_detector')]  # one extra metric
        )))

    runner = DetectionRunner(measurement_runner=MeasurementRunner(
        node=Mock(spec=MesosNode, get_tasks=Mock(return_value=[t1, t2])),
        metrics_storage=Mock(spec=storage.Storage, store=Mock()),
        rdt_enabled=False,
        extra_labels=dict(extra_label='extra_value'),
    ),
                             anomalies_storage=Mock(spec=storage.Storage,
                                                    store=Mock()),
                             detector=detector_mock)

    runner._measurement_runner._wait = Mock()
    runner._measurement_runner._initialize()

    # Mock to finish after one iteration.
    runner._measurement_runner._iterate()

    got_anomalies_metrics = runner._anomalies_storage.store.mock_calls[0][1][0]

    # Check that anomaly based metrics,
    assert_metric(got_anomalies_metrics,
                  'anomaly',
                  expected_metric_some_labels={
                      LABEL_WORKLOAD_INSTANCE:
                      t1.labels[LABEL_WORKLOAD_INSTANCE],
                      LABEL_CONTENDED_TASK_ID:
                      t1.task_id,
                      LABEL_CONTENDING_WORKLOAD_INSTANCE:
                      t2.labels[LABEL_WORKLOAD_INSTANCE]
                  })
    assert_metric(got_anomalies_metrics,
                  'contention_related_metric',
                  expected_metric_some_labels=dict(extra_label='extra_value'))
    assert_metric(got_anomalies_metrics, 'extra_metric_from_detector')
    assert_metric(got_anomalies_metrics,
                  'anomaly_count',
                  expected_metric_value=1)
    assert_metric(got_anomalies_metrics, 'anomaly_last_occurrence')

    # Check that detector was called with proper arguments.
    (platform, tasks_data) = detector_mock.detect.mock_calls[0][1]
    # Make sure that proper values are propagate to detect method for t1.
    assert platform == platform_mock
    # Measurements have to mach get_measurements mock from measurements_patch decorator.
    # Labels should have extra LABEL_WORKLOAD_INSTANCE based on redis_task_with_default_labels
    # and sanitized version of other labels for mesos (without prefix).
    # Resources should match resources from redis_task_with_default_labels
    # Check any metrics for t2
    cpu_usage = TASK_CPU_USAGE * (len(subcgroups) if subcgroups else 1)

    assert_subdict(tasks_data[t1.task_id].measurements,
                   {MetricName.TASK_CPU_USAGE_SECONDS: cpu_usage})
    assert_subdict(tasks_data[t1.task_id].labels, {
        LABEL_WORKLOAD_INSTANCE: 'redis_6792_t1',
        'load_generator': 'rpc-perf-t1'
    })

    assert_subdict(tasks_data[t1.task_id].resources, t1.resources)

    assert_subdict(tasks_data[t1.task_id].measurements,
                   {MetricName.TASK_CPU_USAGE_SECONDS: cpu_usage})
def test_allocation_runner(_get_allocations_mock, _get_allocations_mock_,
                           platform_mock, reset_counter_mock, subcgroups):
    """ Low level system calls are not mocked - but higher level objects and functions:
        Cgroup, Resgroup, Platform, etc. Thus the test do not cover the full usage scenario
        (such tests would be much harder to write).
    """
    # Tasks mock
    t1 = redis_task_with_default_labels('t1', subcgroups)
    t2 = redis_task_with_default_labels('t2', subcgroups)

    # Allocator mock (lower the quota and number of cache ways in dedicated group).
    # Patch some of the functions of AllocationRunner.
    runner = AllocationRunner(measurement_runner=MeasurementRunner(
        node=Mock(spec=MesosNode, get_tasks=Mock(return_value=[])),
        metrics_storage=Mock(spec=storage.Storage, store=Mock()),
        rdt_enabled=True,
        gather_hw_mm_topology=False,
        extra_labels=dict(extra_labels='extra_value'),
    ),
                              anomalies_storage=Mock(spec=storage.Storage,
                                                     store=Mock()),
                              allocations_storage=Mock(spec=storage.Storage,
                                                       store=Mock()),
                              rdt_mb_control_required=True,
                              rdt_cache_control_required=True,
                              allocator=Mock(spec=Allocator,
                                             allocate=Mock(return_value=({},
                                                                         [],
                                                                         []))))

    runner._measurement_runner._wait = Mock()
    runner._measurement_runner._initialize()

    ############
    # First run (one task, one allocation).
    runner._measurement_runner._node.get_tasks.return_value = [t1]
    runner._allocator.allocate.return_value = ({
        t1.task_id: {
            AllocationType.QUOTA: .5,
            AllocationType.RDT: RDTAllocation(name=None, l3='L3:0=0000f')
        }
    }, [], [])
    runner._measurement_runner._iterate()

    # Check that allocator.allocate was called with proper arguments.
    assert runner._allocator.allocate.call_count == 1
    (_, tasks_data) = runner._allocator.allocate.mock_calls[0][1]
    assert_subdict(tasks_data[t1.task_id].allocations, _os_tasks_allocations)

    # Check allocation metrics ...
    got_allocations_metrics = runner._allocations_storage.store.call_args[0][0]
    # ... generic allocation metrics ...
    assert_metric(got_allocations_metrics,
                  'allocations_count',
                  dict(extra_labels='extra_value'),
                  expected_metric_value=1)
    assert_metric(got_allocations_metrics,
                  'allocations_errors',
                  dict(extra_labels='extra_value'),
                  expected_metric_value=0)
    assert_metric(got_allocations_metrics, 'allocation_duration',
                  dict(extra_labels='extra_value'))
    # ... and allocation metrics for task t1.
    assert_metric(got_allocations_metrics, 'allocation_cpu_quota',
                  dict(task=t1.task_id, extra_labels='extra_value'), 0.5)
    assert_metric(got_allocations_metrics, 'allocation_rdt_l3_cache_ways',
                  dict(task=t1.task_id, extra_labels='extra_value'), 4)
    assert_metric(got_allocations_metrics, 'allocation_rdt_l3_mask',
                  dict(task=t1.task_id, extra_labels='extra_value'), 15)

    ############################
    # Second run (two tasks, one allocation)
    runner._measurement_runner._node.get_tasks.return_value = [t1, t2]
    first_run_t1_task_allocations = {
        t1.task_id: {
            AllocationType.QUOTA: .5,
            AllocationType.RDT: RDTAllocation(name=None, l3='L3:0=0000f')
        }
    }
    runner._allocator.allocate.return_value = (first_run_t1_task_allocations,
                                               [], [])
    runner._measurement_runner._iterate()

    # Check allocation metrics...
    got_allocations_metrics = runner._allocations_storage.store.call_args[0][0]
    # ... generic allocation metrics ...
    assert_metric(got_allocations_metrics,
                  'allocations_count',
                  expected_metric_value=2)
    assert_metric(got_allocations_metrics,
                  'allocations_errors',
                  expected_metric_value=0)
    assert_metric(got_allocations_metrics, 'allocation_duration')
    # ... and metrics for task t1 ...
    assert_metric(got_allocations_metrics, 'allocation_cpu_quota',
                  dict(task=t1.task_id), 0.5)
    assert_metric(got_allocations_metrics, 'allocation_rdt_l3_cache_ways',
                  dict(task=t1.task_id), 4)
    assert_metric(got_allocations_metrics, 'allocation_rdt_l3_mask',
                  dict(task=t1.task_id), 15)

    # Check allocate call.
    (_, tasks_data) = runner._allocator.allocate.mock_calls[1][1]
    # (note: tasks_allocations are always read from filesystem)
    assert_subdict(tasks_data[t1.task_id].allocations, _os_tasks_allocations)
    assert_subdict(tasks_data[t2.task_id].allocations, _os_tasks_allocations)

    ############
    # Third run (two tasks, two allocations) - modify L3 cache and put in the same group
    runner._measurement_runner._node.get_tasks.return_value = [t1, t2]
    runner._allocator.allocate.return_value = \
        {
            t1.task_id: {
                AllocationType.QUOTA: 0.7,
                AllocationType.RDT: RDTAllocation(name='one_group', l3='L3:0=00fff')
            },
            t2.task_id: {
                AllocationType.QUOTA: 0.8,
                AllocationType.RDT: RDTAllocation(name='one_group', l3='L3:0=00fff')
            }
        }, [], []
    runner._measurement_runner._iterate()

    got_allocations_metrics = runner._allocations_storage.store.call_args[0][0]

    assert_metric(got_allocations_metrics,
                  'allocations_count',
                  expected_metric_value=4)
    # ... and metrics for task t1 ...
    assert_metric(got_allocations_metrics, 'allocation_cpu_quota',
                  dict(task=t1.task_id), 0.7)
    assert_metric(got_allocations_metrics, 'allocation_cpu_quota',
                  dict(task=t2.task_id), 0.8)
    assert_metric(got_allocations_metrics, 'allocation_rdt_l3_cache_ways',
                  dict(task=t1.task_id, group_name='one_group'),
                  12)  # 00fff=12
    assert_metric(got_allocations_metrics, 'allocation_rdt_l3_cache_ways',
                  dict(task=t1.task_id, group_name='one_group'),
                  12)  # 00fff=12
Example #9
0
def test_get_unknown_event(event_name, event_value, umask, config, config1,
                           expected_output):
    assert MeasurementRunner._get_unknown_event(event_name, event_value, umask,
                                                config,
                                                config1) == expected_output
    assert event_name in METRICS_METADATA
Example #10
0
def test_get_event_if_known(event, expected_output):
    assert MeasurementRunner._get_event_if_known(event) == expected_output
Example #11
0
def test_parse_uncore_event_input_fail(event, exception):
    with pytest.raises(exception):
        MeasurementRunner._parse_uncore_event_input(event)
Example #12
0
def test_parse_uncore_event_input(event, expected_output):
    assert MeasurementRunner._parse_uncore_event_input(
        event) == expected_output