def test_knowledge_graph_has_correct_neighbors(self):
     question = "when was the attendance greater than 5000?"
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f'{self.FIXTURES_ROOT}/data/wikitables/sample_table.tagged'
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     knowledge_graph = table_question_context.get_table_knowledge_graph()
     neighbors = knowledge_graph.neighbors
     # '5000' is neighbors with number and date columns. '-1' is in entities because there is a
     # date column, which is its only neighbor.
     assert set(neighbors.keys()) == {
         'date_column:year', 'number_column:year', 'string_column:year',
         'number_column:division', 'string_column:division',
         'string_column:league', 'string_column:regular_season',
         'number_column:regular_season', 'string_column:playoffs',
         'string_column:open_cup', 'number_column:open_cup',
         'string_column:avg_attendance', 'number_column:avg_attendance',
         '5000', '-1'
     }
     assert set(neighbors['date_column:year']) == {'5000', '-1'}
     assert neighbors['number_column:division'] == ['5000']
     assert neighbors['string_column:league'] == []
     assert neighbors['string_column:regular_season'] == []
     assert neighbors['string_column:playoffs'] == []
     assert neighbors['string_column:open_cup'] == []
     assert neighbors['number_column:avg_attendance'] == ['5000']
     assert set(neighbors['5000']) == {
         'date_column:year', 'number_column:division',
         'number_column:avg_attendance', 'number_column:regular_season',
         'number_column:year', 'number_column:open_cup'
     }
     assert neighbors['-1'] == ['date_column:year']
 def test_rank_number_extraction(self):
     question = "what was the first tamil-language film in 1943?"
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f'{self.FIXTURES_ROOT}/data/corenlp_processed_tables/TEST-1.table'
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     _, numbers = table_question_context.get_entities_from_question()
     assert numbers == [("1", 3), ('1943', 9)]
 def test_entity_extraction_from_question_with_quotes(self):
     question = "how many times does \"friendly\" appear in the competition column?"
     question_tokens = self.tokenizer.tokenize(question)
     test_file = 'fixtures/data/wikitables/tables/346.tagged'
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     entities, _ = table_question_context.get_entities_from_question()
     assert entities == [('string:friendly', ['string_column:competition'])]
 def test_date_column_type_extraction_1(self):
     question = "how many were elected?"
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f'{self.FIXTURES_ROOT}/data/corenlp_processed_tables/TEST-5.table'
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     data = table_question_context.table_data[0]
     assert "date_column:first_elected" in data
 def test_multiword_entity_extraction(self):
     question = "was the positioning better the year of the france venue or the year of the south korea venue?"
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f'{self.FIXTURES_ROOT}/data/corenlp_processed_tables/TEST-3.table'
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     entities, _ = table_question_context.get_entities_from_question()
     assert entities == [("string:france", ["string_column:venue"]),
                         ("string:south_korea", ["string_column:venue"])]
def search(tables_directory: str, data: JsonDict, output_path: str,
           max_path_length: int, max_num_logical_forms: int, use_agenda: bool,
           output_separate_files: bool, conservative_agenda: bool) -> None:
    print(f"Starting search with {len(data)} instances", file=sys.stderr)
    executor_logger = logging.getLogger(
        'weak_supervision.semparse.executors.wikitables_variable_free_executor'
    )
    executor_logger.setLevel(logging.ERROR)
    tokenizer = WordTokenizer()
    if output_separate_files and not os.path.exists(output_path):
        os.makedirs(output_path)
    if not output_separate_files:
        output_file_pointer = open(output_path, "w")
    for instance_data in data:
        utterance = instance_data["question"]
        question_id = instance_data["id"]
        if utterance.startswith('"') and utterance.endswith('"'):
            utterance = utterance[1:-1]
        # For example: csv/200-csv/47.csv -> tagged/200-tagged/47.tagged
        table_file = instance_data["table_filename"].replace("csv", "tagged")
        target_list = instance_data["target_values"]
        tokenized_question = tokenizer.tokenize(utterance)
        table_file = f"{tables_directory}/{table_file}"
        context = TableQuestionContext.read_from_file(table_file,
                                                      tokenized_question)
        world = WikiTablesVariableFreeWorld(context)
        walker = ActionSpaceWalker(world, max_path_length=max_path_length)
        correct_logical_forms = []
        if use_agenda:
            agenda = world.get_agenda(conservative=conservative_agenda)
            allow_partial_match = not conservative_agenda
            all_logical_forms = walker.get_logical_forms_with_agenda(
                agenda=agenda,
                max_num_logical_forms=10000,
                allow_partial_match=allow_partial_match)
        else:
            all_logical_forms = walker.get_all_logical_forms(
                max_num_logical_forms=10000)
        for logical_form in all_logical_forms:
            if world.evaluate_logical_form(logical_form, target_list):
                correct_logical_forms.append(logical_form)
        if output_separate_files and correct_logical_forms:
            with gzip.open(f"{output_path}/{question_id}.gz",
                           "wt") as output_file_pointer:
                for logical_form in correct_logical_forms:
                    print(logical_form, file=output_file_pointer)
        elif not output_separate_files:
            print(f"{question_id} {utterance}", file=output_file_pointer)
            if use_agenda:
                print(f"Agenda: {agenda}", file=output_file_pointer)
            if not correct_logical_forms:
                print("NO LOGICAL FORMS FOUND!", file=output_file_pointer)
            for logical_form in correct_logical_forms[:max_num_logical_forms]:
                print(logical_form, file=output_file_pointer)
            print(file=output_file_pointer)
    if not output_separate_files:
        output_file_pointer.close()
 def setUp(self):
     super().setUp()
     question_tokens = [Token(x) for x in ['what', 'was', 'the', 'last', 'year', '2013', '?']]
     self.table_file = self.FIXTURES_ROOT / 'data' / 'wikitables' / 'sample_table.tagged'
     self.table_context = TableQuestionContext.read_from_file(self.table_file, question_tokens)
     self.world_with_2013 = WikiTablesVariableFreeWorld(self.table_context)
     usl_league_tokens = [Token(x) for x in ['what', 'was', 'the', 'last', 'year', 'with', 'usl',
                                             'a', 'league', '?']]
     self.world_with_usl_a_league = self._get_world_with_question_tokens(usl_league_tokens)
 def test_number_comparison_works(self):
     # TableQuestionContext normlaizes all strings according to some rules. We want to ensure
     # that the original numerical values of number cells is being correctly processed here.
     tokens = WordTokenizer().tokenize("when was the attendance the highest?")
     tagged_file = self.FIXTURES_ROOT / "data" / "corenlp_processed_tables" / "TEST-2.table"
     context = TableQuestionContext.read_from_file(tagged_file, tokens)
     executor = WikiTablesVariableFreeExecutor(context.table_data)
     result = executor.execute("(select_date (argmax all_rows number_column:attendance) date_column:date)")
     assert result == Date(-1, 11, 10)
 def test_date_extraction(self):
     question = "how many laps did matt kenset complete on february 26, 2006."
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f'{self.FIXTURES_ROOT}/data/corenlp_processed_tables/TEST-8.table'
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     _, number_entities = table_question_context.get_entities_from_question(
     )
     assert number_entities == [("2", 8), ("26", 9), ("2006", 11)]
 def test_date_extraction_2(self):
     question = """how many different players scored for the san jose earthquakes during their
                   1979 home opener against the timbers?"""
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f'{self.FIXTURES_ROOT}/data/corenlp_processed_tables/TEST-6.table'
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     _, number_entities = table_question_context.get_entities_from_question(
     )
     assert number_entities == [("1979", 12)]
 def test_number_extraction(self):
     question = """how many players on the 191617 illinois fighting illini men's basketball team
                   had more than 100 points scored?"""
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f'{self.FIXTURES_ROOT}/data/corenlp_processed_tables/TEST-7.table'
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     _, number_entities = table_question_context.get_entities_from_question(
     )
     assert number_entities == [("191617", 5), ("100", 16)]
 def test_null_extraction(self):
     question = "on what date did the eagles score the least points?"
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f'{self.FIXTURES_ROOT}/data/corenlp_processed_tables/TEST-2.table'
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     entities, numbers = table_question_context.get_entities_from_question()
     # "Eagles" does not appear in the table.
     assert entities == []
     assert numbers == []
 def test_string_column_types_extraction(self):
     question = "how many were elected?"
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f'{self.FIXTURES_ROOT}/data/corenlp_processed_tables/TEST-10.table'
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     data = table_question_context.table_data[0]
     assert "string_column:birthplace" in data
     assert "string_column:advocate" in data
     assert "string_column:notability" in data
     assert "string_column:name" in data
 def test_number_and_entity_extraction(self):
     question = "other than m1 how many notations have 1 in them?"
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f"{self.FIXTURES_ROOT}/data/corenlp_processed_tables/TEST-11.table"
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     string_entities, number_entities = table_question_context.get_entities_from_question(
     )
     assert string_entities == [("string:m1", ["string_column:notation"]),
                                ("string:1", ["string_column:position"])]
     assert number_entities == [("1", 2), ("1", 7)]
 def test_numerical_column_type_extraction(self):
     question = """how many players on the 191617 illinois fighting illini men's basketball team
                   had more than 100 points scored?"""
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f'{self.FIXTURES_ROOT}/data/corenlp_processed_tables/TEST-7.table'
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     data = table_question_context.table_data[0]
     assert "number_column:games_played" in data
     assert "number_column:field_goals" in data
     assert "number_column:free_throws" in data
     assert "number_column:points" in data
 def test_get_knowledge_graph(self):
     question = "other than m1 how many notations have 1 in them?"
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f"{self.FIXTURES_ROOT}/data/corenlp_processed_tables/TEST-11.table"
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     knowledge_graph = table_question_context.get_table_knowledge_graph()
     entities = knowledge_graph.entities
     # -1 is not in entities because there are no date columns in the table.
     assert sorted(entities) == [
         '1', 'number_column:notation', 'number_column:position',
         'string:1', 'string:m1', 'string_column:mnemonic',
         'string_column:notation', 'string_column:position',
         'string_column:short_name', 'string_column:swara'
     ]
     neighbors = knowledge_graph.neighbors
     # Each number extracted from the question will have all number and date columns as
     # neighbors. Each string entity extracted from the question will only have the corresponding
     # column as the neighbor.
     assert set(neighbors['1']) == {
         'number_column:notation', 'number_column:position'
     }
     assert neighbors['string_column:mnemonic'] == []
     assert neighbors['string_column:short_name'] == []
     assert neighbors['string_column:swara'] == []
     assert neighbors['number_column:position'] == ['1']
     assert neighbors['number_column:notation'] == ['1']
     assert neighbors['string_column:position'] == ['string:1']
     assert neighbors['string:1'] == ['string_column:position']
     assert neighbors['string:m1'] == ['string_column:notation']
     assert neighbors['string_column:notation'] == ['string:m1']
     entity_text = knowledge_graph.entity_text
     assert entity_text == {
         '1': '1',
         'string:m1': 'm1',
         'string:1': '1',
         'number_column:notation': 'notation',
         'string_column:notation': 'notation',
         'string_column:mnemonic': 'mnemonic',
         'string_column:short_name': 'short name',
         'string_column:swara': 'swara',
         'string_column:position': 'position',
         'number_column:position': 'position'
     }
 def evaluate_logical_form(self, logical_form: str, target_list: List[str]) -> bool:
     """
     Takes a logical form, and the list of target values as strings from the original lisp
     string, and returns True iff the logical form executes to the target list.
     """
     normalized_target_list = [TableQuestionContext.normalize_string(value) for value in
                               target_list]
     target_value_list = evaluator.to_value_list(normalized_target_list)
     try:
         denotation = self.execute(logical_form)
     except ExecutionError:
         logger.warning(f'Failed to execute: {logical_form}')
         return False
     if isinstance(denotation, list):
         denotation_list = [str(denotation_item) for denotation_item in denotation]
     else:
         if isinstance(denotation, Date):
             target_list = [str(self._make_date(target)) for target in target_list]
         denotation_list = [str(denotation)]
     denotation_value_list = evaluator.to_value_list(denotation_list)
     return evaluator.check_denotation(target_value_list, denotation_value_list)
Example #18
0
    def text_to_instance(
            self,  # type: ignore
            question: str,
            table_lines: List[List[str]],
            target_values: List[str],
            offline_search_output: List[str] = None) -> Instance:
        """
        Reads text inputs and makes an instance. WikitableQuestions dataset provides tables as
        TSV files pre-tagged using CoreNLP, which we use for training.

        Parameters
        ----------
        question : ``str``
            Input question
        table_lines : ``List[List[str]]``
            The table content preprocessed by CoreNLP. See ``TableQuestionContext.read_from_lines``
            for the expected format.
        target_values : ``List[str]``
        offline_search_output : List[str], optional
            List of logical forms, produced by offline search. Not required during test.
        """
        # pylint: disable=arguments-differ
        tokenized_question = self._tokenizer.tokenize(question.lower())
        question_field = TextField(tokenized_question,
                                   self._question_token_indexers)
        # TODO(pradeep): We'll need a better way to input CoreNLP processed lines.
        table_context = TableQuestionContext.read_from_lines(
            table_lines, tokenized_question)
        target_values_field = MetadataField(target_values)
        world = WikiTablesVariableFreeWorld(table_context)
        world_field = MetadataField(world)
        # Note: Not passing any featre extractors when instantiating the field below. This will make
        # it use all the available extractors.
        table_field = KnowledgeGraphField(
            table_context.get_table_knowledge_graph(),
            tokenized_question,
            self._table_token_indexers,
            tokenizer=self._tokenizer,
            include_in_vocab=self._use_table_for_vocab,
            max_table_tokens=self._max_table_tokens)
        production_rule_fields: List[Field] = []
        for production_rule in world.all_possible_actions():
            _, rule_right_side = production_rule.split(' -> ')
            is_global_rule = not world.is_instance_specific_entity(
                rule_right_side)
            field = ProductionRuleField(production_rule,
                                        is_global_rule=is_global_rule)
            production_rule_fields.append(field)
        action_field = ListField(production_rule_fields)

        fields = {
            'question': question_field,
            'table': table_field,
            'world': world_field,
            'actions': action_field,
            'target_values': target_values_field
        }

        # We'll make each target action sequence a List[IndexField], where the index is into
        # the action list we made above.  We need to ignore the type here because mypy doesn't
        # like `action.rule` - it's hard to tell mypy that the ListField is made up of
        # ProductionRuleFields.
        action_map = {
            action.rule: i
            for i, action in enumerate(action_field.field_list)
        }  # type: ignore
        if offline_search_output:
            action_sequence_fields: List[Field] = []
            for logical_form in offline_search_output:
                try:
                    expression = world.parse_logical_form(logical_form)
                except ParsingError as error:
                    logger.debug(
                        f'Parsing error: {error.message}, skipping logical form'
                    )
                    logger.debug(f'Question was: {question}')
                    logger.debug(f'Logical form was: {logical_form}')
                    logger.debug(f'Table info was: {table_lines}')
                    continue
                except:
                    logger.error(logical_form)
                    raise
                action_sequence = world.get_action_sequence(expression)
                try:
                    index_fields: List[Field] = []
                    for production_rule in action_sequence:
                        index_fields.append(
                            IndexField(action_map[production_rule],
                                       action_field))
                    action_sequence_fields.append(ListField(index_fields))
                except KeyError as error:
                    logger.debug(
                        f'Missing production rule: {error.args}, skipping logical form'
                    )
                    logger.debug(f'Question was: {question}')
                    logger.debug(f'Table info was: {table_lines}')
                    logger.debug(f'Logical form was: {logical_form}')
                    continue
                if len(action_sequence_fields
                       ) >= self._max_offline_logical_forms:
                    break

            if not action_sequence_fields:
                # This is not great, but we're only doing it when we're passed logical form
                # supervision, so we're expecting labeled logical forms, but we can't actually
                # produce the logical forms.  We should skip this instance.  Note that this affects
                # _dev_ and _test_ instances, too, so your metrics could be over-estimates on the
                # full test data.
                return None
            fields['target_action_sequences'] = ListField(
                action_sequence_fields)
        if self._output_agendas:
            agenda_index_fields: List[Field] = []
            for agenda_string in world.get_agenda(conservative=True):
                agenda_index_fields.append(
                    IndexField(action_map[agenda_string], action_field))
            if not agenda_index_fields:
                agenda_index_fields = [IndexField(-1, action_field)]
            fields['agenda'] = ListField(agenda_index_fields)
        return Instance(fields)
    def __init__(self, table_context: TableQuestionContext) -> None:
        super().__init__(constant_type_prefixes={
            "string": types.STRING_TYPE,
            "num": types.NUMBER_TYPE
        },
                         global_type_signatures=types.COMMON_TYPE_SIGNATURE,
                         global_name_mapping=types.COMMON_NAME_MAPPING)
        self.table_context = table_context
        # We add name mapping and signatures corresponding to specific column types to the local
        # name mapping based on the table content here.
        column_types = table_context.column_types
        self._table_has_string_columns = False
        self._table_has_date_columns = False
        self._table_has_number_columns = False
        if "string" in column_types:
            for name, translated_name in types.STRING_COLUMN_NAME_MAPPING.items(
            ):
                signature = types.STRING_COLUMN_TYPE_SIGNATURE[translated_name]
                self._add_name_mapping(name, translated_name, signature)
            self._table_has_string_columns = True
        if "date" in column_types:
            for name, translated_name in types.DATE_COLUMN_NAME_MAPPING.items(
            ):
                signature = types.DATE_COLUMN_TYPE_SIGNATURE[translated_name]
                self._add_name_mapping(name, translated_name, signature)
            # Adding -1 to mapping because we need it for dates where not all three fields are
            # specified. We want to do this only when the table has a date column. This is because
            # the knowledge graph is also constructed in such a way that -1 is an entity with date
            # columns as the neighbors only if any date columns exist in the table.
            self._map_name(f"num:-1", keep_mapping=True)
            self._table_has_date_columns = True
        if "number" in column_types or "num2" in column_types:
            for name, translated_name in types.NUMBER_COLUMN_NAME_MAPPING.items(
            ):
                signature = types.NUMBER_COLUMN_TYPE_SIGNATURE[translated_name]
                self._add_name_mapping(name, translated_name, signature)
            self._table_has_number_columns = True
        if "date" in column_types or "number" in column_types or "num2" in column_types:
            for name, translated_name in types.COMPARABLE_COLUMN_NAME_MAPPING.items(
            ):
                signature = types.COMPARABLE_COLUMN_TYPE_SIGNATURE[
                    translated_name]
                self._add_name_mapping(name, translated_name, signature)

        self.table_graph = table_context.get_table_knowledge_graph()

        self._executor = WikiTablesVariableFreeExecutor(
            self.table_context.table_data)

        # TODO (pradeep): Use a NameMapper for mapping entity names too.
        # For every new column name seen, we update this counter to map it to a new NLTK name.
        self._column_counter = 0

        # Adding entities and numbers seen in questions to the mapping.
        question_entities, question_numbers = table_context.get_entities_from_question(
        )
        self._question_entities = [entity for entity, _ in question_entities]
        self._question_numbers = [number for number, _ in question_numbers]
        for entity in self._question_entities:
            # These entities all have prefix "string:"
            self._map_name(entity, keep_mapping=True)

        for number_in_question in self._question_numbers:
            self._map_name(f"num:{number_in_question}", keep_mapping=True)

        # Keeps track of column name productions so that we can add them to the agenda.
        self._column_productions_for_agenda: Dict[str, str] = {}

        # Adding column names to the local name mapping.
        for column_name in table_context.table_data[0].keys():
            self._map_name(column_name, keep_mapping=True)

        self.terminal_productions: Dict[str, str] = {}
        name_mapping = [(name, mapping)
                        for name, mapping in self.global_name_mapping.items()]
        name_mapping += [(name, mapping)
                         for name, mapping in self.local_name_mapping.items()]
        signatures = self.global_type_signatures.copy()
        signatures.update(self.local_type_signatures)
        for predicate, mapped_name in name_mapping:
            if mapped_name in signatures:
                signature = signatures[mapped_name]
                self.terminal_productions[
                    predicate] = f"{signature} -> {predicate}"

        # We don't need to recompute this ever; let's just compute it once and cache it.
        self._valid_actions: Dict[str, List[str]] = None
 def _get_world_with_question_tokens(self, tokens: List[Token]) -> WikiTablesVariableFreeWorld:
     table_context = TableQuestionContext.read_from_file(self.table_file, tokens)
     world = WikiTablesVariableFreeWorld(table_context)
     return world
 def test_table_data(self):
     question = "what was the attendance when usl a league played?"
     question_tokens = self.tokenizer.tokenize(question)
     test_file = f'{self.FIXTURES_ROOT}/data/wikitables/sample_table.tagged'
     table_question_context = TableQuestionContext.read_from_file(
         test_file, question_tokens)
     assert table_question_context.table_data == [{
         'date_column:year':
         Date(2001, -1, -1),
         'string_column:year':
         '2001',
         'number_column:year':
         2001.0,
         'number_column:division':
         2.0,
         'string_column:division':
         '2',
         'string_column:league':
         'usl_a_league',
         'string_column:regular_season':
         '4th_western',
         'number_column:regular_season':
         4.0,
         'string_column:playoffs':
         'quarterfinals',
         'string_column:open_cup':
         'did_not_qualify',
         'number_column:open_cup':
         None,
         'string_column:avg_attendance':
         '7_169',
         'number_column:avg_attendance':
         7169.0
     }, {
         'date_column:year':
         Date(2005, -1, -1),
         'string_column:year':
         '2005',
         'number_column:year':
         2005.0,
         'number_column:division':
         2.0,
         'string_column:division':
         '2',
         'string_column:league':
         'usl_first_division',
         'string_column:regular_season':
         '5th',
         'number_column:regular_season':
         5.0,
         'string_column:playoffs':
         'quarterfinals',
         'string_column:open_cup':
         '4th_round',
         'number_column:open_cup':
         4.0,
         'string_column:avg_attendance':
         '6_028',
         'number_column:avg_attendance':
         6028.0
     }]