Example #1
0
def showdegree(flag):
    namemat = []
    Degreedis = []
    namemat = webmodel.readArff('E:/write.xls', flag)
    Num = namemat.__len__()  # 节点个数
    for i in range(0, 63):
        Degreedis.append(0)
    i = 0
    for line in namemat:
        Degreedis[i] = sum(line)
        i += 1
    # print Degreedis
    temp = []

    for j in range(0, 63):
        temp.append(j)
    fig1 = plt.figure(2)
    rects = plt.bar(left=(temp[0:63]),
                    height=(Degreedis[0:63]),
                    width=1,
                    align="center",
                    yerr=0.000001)
    plt.title('The degree of these nodes')
    plt.xlabel('Number of nodes')
    plt.ylabel('Degree')
    plt.show()
Example #2
0
def getclustering_co(flag):
    namemat = []
    EEE = []
    CCC = []

    namemat = webmodel.readArff('E:/write.xls', flag)
    Num = namemat.__len__()  # 节点个数
    # print namemat
    #print Num

    for i in range(0, 63):
        EEE.append(0)
        CCC.append(0)
    for i in range(0, 63):
        neighbornum = 0
        neighbor = []
        for j in range(0, 63):
            if i != j and namemat[i][j] == 1:
                neighbornum += 1
                neighbor.append(j)
        for linea in neighbor:
            for lineb in neighbor:
                if namemat[linea][lineb] == 1:
                    EEE[i] += 1
        EEE[i] = EEE[i] / 2
        # print EEE[i]
        if (EEE[i] == 0):
            CCC[i] = 0
        else:
            CCC[i] = 2 * EEE[i] / 1.0 / (neighbornum * (neighbornum - 1))
    aver = sum(CCC) / 1.0 / Num
    print aver
Example #3
0
def corenessca(flagg):
    namemat = []
    coreness = []
    Degreedis = []
    namemat = webmodel.readArff('E:/write.xls', flagg)
    Num = namemat.__len__()  # 节点个数
    print namemat
    for i in range(0, Num):
        coreness.append(0)
        Degreedis.append(0)
    flag = 0
    while flag < 63:
        v = 0
        for line in namemat:
            Degreedis[v] = sum(line)
            v += 1
        for j in range(0, Num):
            if Degreedis[j] == flag:
                print('Number %d node has coreness: ' % (j + 1), flag)
                #print flag
                for k in range(0, Num):
                    namemat[k][j] = 0
                    namemat[j][k] = 0
        v = 0
        for line in namemat:
            Degreedis[v] = sum(line)
            v += 1
        flag2 = 0
        for l in range(0, Num):
            if Degreedis[l] == flag and flag != 0:
                flag2 = 1
        if flag2 == 0:
            flag += 1
Example #4
0
def calculationtwo(flag):
    lenthma = []
    lenthma = webmodel.readArff('E:/write.xls',flag)
    Num = lenthma.__len__()  # 节点个数
    lenthmat=copy.deepcopy(lenthma)
    for m in range(0,Num):
        for n in range(0, Num):
            if lenthmat[m][n]==0:
                lenthmat[m][n]='INF'
    for m in range(0, Num):
        lenthmat[m][m]=0

    for k in range(0,Num):
        for i in range(0, Num):
            for j in range(0, Num):
                if lenthmat[i][k] != 'INF' and lenthmat[k][j] != 'INF':
                    if lenthmat[i][j] > lenthmat[i][k] + lenthmat[k][j]:
                        lenthmat[i][j] = lenthmat[i][k] + lenthmat[k][j]
    sumlen=0
    for i in range(0,Num):
        for j in range(0,Num):
            if lenthmat[i][j]!='INF':
                sumlen = sumlen + lenthmat[i][j]
    ave=sumlen/1.0/(Num*(Num-1))
    print("aver_path lengh:", ave)
    return ave
Example #5
0
def drawnetgraph(Num):
    lenthmat = webmodel.readArff('E:/write.xls', Num)
    G = nx.Graph()
    Matrix = np.array([])
    Matrix = np.array(lenthmat)
    #print len(Matrix)
    for i in range(0, 63):
        for j in range(0, 63):
            if Matrix[i][j] == 1:
                G.add_edge(i, j)
    del lenthmat
    nx.draw(G, node_size=20)
    plt.show()
Example #6
0
def showdistribution(flag):
    namemat = []
    Degreedis = []
    namemat = webmodel.readArff('E:/write.xls', flag)
    Num = namemat.__len__()  # 节点个数
    for i in range(0, 63):
        Degreedis.append(0)
    i = 0
    for line in namemat:
        Degreedis[i] = sum(line)
        i += 1
    # print Degreedis
    temp = []
    for j in range(0, 63):
        temp.append(j)
    aver_degree = sum(Degreedis) / Num
    M = max(Degreedis)  # 最大的度
    print M
    Degreedistribution = []
    dnum = []
    for m in range(0, M + 1):
        Degreedistribution.append(0)
        dnum.append(0)

    for item in Degreedis:
        for n in range(0, M + 1):
            if item == n:
                dnum[n] += 1
    for k in range(0, M + 1):
        Degreedistribution[k] = dnum[k] / 1.0 / Num
    fig1 = plt.figure(2)
    rects = plt.bar(left=(temp[0:M + 1]),
                    height=(Degreedistribution[0:M + 1]),
                    width=1,
                    align="center",
                    yerr=0.000001)
    plt.title('The degreedistribution of these nodes')
    plt.xlabel('Number of nodes')
    plt.ylabel('Degreedistribution')
    plt.show()
Example #7
0
def largestsubgraph(flagg):
    namemat = []
    namemat = webmodel.readArff('E:/write.xls', flagg)
    Num = namemat.__len__()  # 节点个数
    scatterpr = []
    scatterpi = []
    Degreedis = []
    tempa = []
    tempb = []
    largesta = []
    largestb = []
    for i in range(0, 64):
        largesta.append(0)
        largestb.append(0)
    aa = copy.deepcopy(namemat)
    bb = copy.deepcopy(namemat)
    Num = namemat.__len__()
    for line in namemat:
        Degreedis.append(sum(line))
    #print Degreedis

    # intentional_attack后
    tempa = getfloyd(aa)
    print tempa
    k = 0
    for line in tempa:
        for j in line:

            if j != 0 and j != 'INF':
                largesta[k] += 1
        k += 1
    terma = max(largesta)
    scatterpi.append(terma)
    print terma

    for j in range(0, Num):
        k = 0
        for i in range(0, 63):
            largesta[i] = 0
        maxnode = Degreedis.index(max(Degreedis))
        Degreedis[maxnode] = 0
        for m in range(0, Num):
            aa[m][maxnode] = 0
            aa[maxnode][m] = 0
        tempa = getfloyd(aa)
        for line in tempa:
            for j in line:
                if j != 0 and j != 'INF':
                    largesta[k] += 1
            k += 1
        terma = max(largesta)
        scatterpi.append(terma)
    # random_attack后
    tempb = getfloyd(bb)
    k = 0
    for line in tempb:
        for j in line:
            if j != 0 and j != 'INF':
                largestb[k] += 1
        k += 1
    termb = max(largestb)
    scatterpr.append(termb)

    b_list = range(0, 63)
    blist_webId = random.sample(b_list, 63)
    for j in range(0, Num):
        k = 0
        for i in range(0, 63):
            largestb[i] = 0
        temp = blist_webId[j]
        for m in range(0, Num):
            bb[m][temp] = 0
            bb[temp][m] = 0
        tempb = getfloyd(bb)
        for line in tempb:
            for j in line:
                if j != 0 and j != 'INF':
                    largestb[k] += 1
            k += 1
        termb = max(largestb)
        scatterpr.append(termb)

    print scatterpi
    print scatterpr
    x = np.arange(0, 64)
    y = x
    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    # 设置标题
    ax1.set_title('Attack!!!')
    # 设置X轴标签
    plt.xlabel('Number')
    # 设置Y轴标签
    plt.ylabel('Maximum Connected Subgraph')
    # 画散点图
    ax1.scatter(x, scatterpi, s=12, c='r', marker='o')
    ax1.scatter(x, scatterpr, s=10, c='b', marker='o')
    # 设置图标
    label = ["intentional", "random"]
    plt.legend(label, loc=0, ncol=2)
    # 显示所画的图
    plt.show()
Example #8
0
def aver_pathle(flagg):

    namemat = []
    namemat = webmodel.readArff('E:/write.xls', flagg)
    Num = namemat.__len__()  # 节点个数

    scatterpr = []
    scatterpi = []
    Degreedis = []
    Num = namemat.__len__()
    aa = copy.deepcopy(namemat)
    bb = copy.deepcopy(namemat)
    for line in namemat:
        Degreedis.append(sum(line))

    # intentional_attack后
    ava = aver_shpathl.calculation(bb, Num)
    scatterpi.append(ava)
    jin = Num
    for j in range(0, Num):
        maxnode = Degreedis.index(max(Degreedis))
        Degreedis[maxnode] = 0
        for k in range(0, Num):
            aa[k][maxnode] = 0
            aa[maxnode][k] = 0
        jin -= 1
        if jin == 0 or jin == 1:
            scatterpi.append(0)
        else:
            ave = aver_shpathl.calculation(bb, jin)
            scatterpi.append(ave)

    # random_attack后
    b_list = range(0, 63)
    blist_webId = random.sample(b_list, 63)
    ave = aver_shpathl.calculation(bb, Num)
    scatterpr.append(ave)

    jim = Num
    for j in range(0, Num):
        temp = blist_webId[j]
        for k in range(0, Num):
            bb[k][temp] = 0
            bb[temp][k] = 0
        jim -= 1
        if jim == 0 or jim == 1:
            scatterpr.append(0)
        else:
            ave = aver_shpathl.calculation(bb, jim)
            scatterpr.append(ave)
    x = np.arange(0, 64)
    y = x
    fig = plt.figure()
    ax1 = fig.add_subplot(111)
    # 设置标题
    ax1.set_title('Attack!!!')
    # 设置X轴标签
    plt.xlabel('Number')
    # 设置Y轴标签
    plt.ylabel('Average Path Length')
    # 画散点图
    ax1.scatter(x, scatterpi, s=12, c='r', marker='o')
    ax1.scatter(x, scatterpr, s=10, c='b', marker='o')
    # 设置图标
    label = ["intentional", "random"]
    plt.legend(label, loc=0, ncol=2)
    # 显示所画的图
    plt.show()
Example #9
0
        lenthmat[m][m]=0

    for k in range(0,Num):
        for i in range(0, Num):
            for j in range(0, Num):
                if lenthmat[i][k] != 'INF' and lenthmat[k][j] != 'INF':
                    if lenthmat[i][j] > lenthmat[i][k] + lenthmat[k][j]:
                        lenthmat[i][j] = lenthmat[i][k] + lenthmat[k][j]

    sumlen=0

    for i in range(0,Num):
        for j in range(0,Num):
            if lenthmat[i][j]!='INF':
                sumlen = sumlen + lenthmat[i][j]
    ave=sumlen/1.0/(Num*(Num-1))
    return ave


if __name__ == '__main__':
    lenthmat = []
    lenthmat = webmodel.readArff('E:/write.xls',0)
    Num = lenthmat.__len__()#节点个数
    #print namemat
    print Num
    #a = [[0, 1, 1, 0, 1], [1, 0, 1, 1, 0], [1, 1, 0, 0, 0], [0, 1, 0, 0, 0], [1, 0, 0, 0, 0]]
   # n=a.__len__()
    ave=calculation(lenthmat, Num)
    print("aver_path lengh:", ave)