def plotLattice():
    p.figure()
    p.hold('on')
    sd = np.where(I==-1) #spin down
    su = np.where(I==1) #spin up
    l = str(L)
    p.scatter(sd[0],sd[1],color='black',title='2D Ising Model Size: '+l+'x'+l)
    p.scatter(su[0],su[1],color='blue')
uefa_data = sports[sports.keys()[4]][:]

dob_months = [int(dob.split('-')[1]) for dob in uefa_data['DOB']]

mCount = Counter(dob_months)

for c in mCount:
    print c, mCount[c]

months = mCount.keys()
soccer = np.array(mCount.values())

p.plot(months,soccer,width=500, height=300,title='Number of Births per Month for UEFA 2012')

#http://www.cdc.gov/nchs/data/nvsr/nvsr60/nvsr60_01_tables.pdf#I02
#birth rates per month across USA 2009
US_Total_2009 = np.array([337980,316641,347803,337272,345257,346971,368450,359554\
                          ,361922,347625,320195,340995],dtype='float64')
                
p.figure()
p.plot(months,US_Total_2009,width=500, height=300,title='Totals Births per Month 2009 (USA)')

p.figure()
soccer_normed = soccer/float(soccer.max())
US_normed = US_Total_2009/float(US_Total_2009.max())+.2

p.hold('on')
p.plot(months,US_normed,width=500, height=300,color='red',title='Normalized Birthrates per Month<br/>Red: USA (2009 shifted .2), Blue: NBA')
p.plot(months,soccer_normed,color='blue')
from webplot import p
p.use_doc('webplot example')
import numpy as np
import datetime
import time
x = np.arange(100) / 6.0
y = np.sin(x)
z = np.cos(x)
data_source = p.make_source(idx=range(100), x=x, y=y, z=z)
p.plot(x, y, 'orange')
p.figure()
p.plot('x', 'y', color='blue', data_source=data_source, title='sincos')
p.plot('x', 'z', color='green')
p.figure()
p.plot('x', 'y', data_source=data_source)
p.figure()
p.plot('x', 'z', data_source=data_source)
p.figure()
p.table(data_source, ['x', 'y', 'z'])
p.scatter('x', 'y', data_source=data_source)
p.figure()
p.scatter('x', 'z', data_source=data_source)
p.figure()
p.hold(False)
p.scatter('x', 'y', 'orange', data_source=data_source)
p.scatter('x', 'z', 'red', data_source=data_source)
p.plot('x', 'z', 'yellow', data_source=data_source)
p.plot('x', 'y', 'black', data_source=data_source)
print "click on the plots tab to see results"