Example #1
0
def CollectStatis(_map):
    Sigma=weight.Weight("SmoothT", _map, "TwoSpins", "AntiSymmetric")
    SigmaSmoothT=WeightEstimator(Sigma)
    Polar=weight.Weight("SmoothT", _map, "FourSpins", "Symmetric")
    PolarSmoothT=WeightEstimator(Polar)
    _FileList=GetFileList()
    if len(_FileList)==0:
        raise CollectStatisFailure("No statistics files to read!") 
    log.info("Collect statistics from {0}".format(_FileList))
    Total=len(_FileList)
    Success=0.0
    for f in _FileList:
        try:
            log.info("Merging {0} ...".format(f));
            Dict=IO.LoadBigDict(f)
            SigmaSmoothT.MergeFromDict(Dict['Sigma']['Histogram'])
            PolarSmoothT.MergeFromDict(Dict['Polar']['Histogram'])
        except:
            log.info("Fails to merge\n {0}".format(traceback.format_exc()))
        else:
            Success+=1.0
    log.info("{0}/{1} statistics files read!".format(int(Success), Total))
    if float(Success)/Total<AcceptRatio:
        raise CollectStatisFailure("More than {0}% statistics files fail to read!".format(100.0*AcceptRatio)) 
    return (SigmaSmoothT, PolarSmoothT)
Example #2
0
def FullGammaG(IrGammaG, W0, _map):
    sub = 0
    BKPolar = weight.Weight("SmoothT", _map, "FourSpins", "Symmetric", "R",
                            "T")

    UPUP = _map.Spin2Index(UP, UP)
    DOWNDOWN = _map.Spin2Index(DOWN, DOWN)
    UPDOWN = _map.Spin2Index(UP, DOWN)
    DOWNUP = _map.Spin2Index(DOWN, UP)

    IrGammaGuu = np.zeros((_map.Vol, _map.MaxTauBin)) + 0.0 * 1j
    IrGammaGdu = np.zeros((_map.Vol, _map.MaxTauBin)) + 0.0 * 1j
    for i in range(_map.MaxTauBin):
        IrGammaGuu[:, i] = IrGammaG[UP, :, i, i]
        IrGammaGdu[:, i] = IrGammaG[DOWN, :, i, i]

    BKPolar.Data[UPUP, sub, UPUP, sub, :, :] = IrGammaGuu
    BKPolar.Data[DOWNDOWN, sub, DOWNDOWN, sub, :, :] = IrGammaGuu
    BKPolar.Data[DOWNDOWN, sub, UPUP, sub, :, :] = IrGammaGdu
    BKPolar.Data[UPUP, sub, DOWNDOWN, sub, :, :] = IrGammaGdu

    # print "BKPolar[UP,UP]=\n", BKPolar.Data[UPUP,0,UPUP,0,0,:]

    BKPolar.FFT("K", "W")
    W0.FFT("K")

    Denorm, JP = calc.Calculate_Denorminator(W0, BKPolar, _map)

    # JPJ=np.einsum("ijklvt,klmnv->ijmnvt", JP, W0.Data)
    BKChiTensor = weight.Weight("SmoothT", _map, "FourSpins", "Symmetric", "K",
                                "W")
    lu_piv, Determ = weight.LUFactor(Denorm)
    Check_Denorminator(Denorm, Determ, _map)
    BKChiTensor.LUSolve(lu_piv, -BKPolar.Data)
    return BKChiTensor, Determ
Example #3
0
 def Build(self):
     #self.BareG and self.BareW must be reinitialized at every time Build() is called
     self.BareG=weight.Weight("SmoothT", self.__Map, "TwoSpins", "AntiSymmetric", "R", "T")
     self.BareW=weight.Weight("DeltaT", self.__Map, "FourSpins", "Symmetric", "R", "T")
     LatName=self.Lat.Name
     try:
         getattr(self, self.__Model)(LatName)
     except:
         Assert(False, "Model {0} has not been implemented!".format(self.__Model))
     return (self.BareG,self.BareW)
def W_Dyson(W0, Polar, map, Lat):
    W=weight.Weight("SmoothT", map, "FourSpins", "Symmetric", "K","W")
    ChiTensor=weight.Weight("SmoothT", map, "FourSpins", "Symmetric", "K","W")

    Polar.FFT("K","W")
    Denorm,JP=Calculate_Denorminator(W0, Polar, map)

    W0.FFT("K")
    JPJ=np.einsum("ijklvt,klmnv->ijmnvt", JP, W0.Data)
    lu_piv,Determ=weight.LUFactor(Denorm)
    Check_Denorminator(Determ,map)
    W.LUSolve(lu_piv, JPJ)
    ChiTensor.LUSolve(lu_piv, -Polar.Data)
    return W, ChiTensor, Determ
Example #5
0
def FastFourierWWGammaW(GGammaG, W0, W, _map):
    import gamma3
    # GGammaG=np.array(GGammaG)
    sub = 0
    UPUP = _map.Spin2Index(UP, UP)
    DOWNDOWN = _map.Spin2Index(DOWN, DOWN)
    UPDOWN = _map.Spin2Index(UP, DOWN)
    DOWNUP = _map.Spin2Index(DOWN, UP)

    spinindex, spin2index = GenerateSpinIndex(_map)

    W.FFT("R", "T")
    W0.FFT("R", "T")
    Wshift = weight.Weight("SmoothT", _map, "FourSpins", "Symmetric", "R", "T")
    for t in range(_map.MaxTauBin):
        t1 = t - 1
        if t1 < 0:
            t1 += _map.MaxTauBin
        Wshift.Data[:, :, :, :, :, t] = 0.5 * (W.Data[:, :, :, :, :, t1] +
                                               W.Data[:, :, :, :, :, t])
    Wtot = np.array(Wshift.Data[:, 0, :, 0, :, :]) * _map.Beta / _map.MaxTauBin
    Wtot[:, :, :, 0] += W0.Data[:, 0, :, 0, :]
    Wtot = FFTWshift(Wtot, _map, 1)

    GGammaG = FFTGammaW(GGammaG, _map, 1)

    WWGammaW = gamma3.fast_fourier_wwgammaw(GGammaG, Wtot, _map.Beta,
                                            spinindex, spin2index, _map.Vol,
                                            _map.MaxTauBin)

    WWGammaW = FFTGammaW(WWGammaW, _map, -1)
    W0.FFT("R", "T")
    W.FFT("R", "T")
    return WWGammaW
Example #6
0
def G_Dyson(G0, SigmaDeltaT, Sigma, map):
    Beta = map.Beta
    G = weight.Weight("SmoothT", map, "TwoSpins", "AntiSymmetric", "K", "W")
    G0.FFT("K", "W")
    SigmaDeltaT.FFT("K")
    Sigma.FFT("K", "W")

    NSpin, NSub = G.NSpin, G.NSublat

    G0SigmaDeltaT = np.einsum("ijklvt,klmnv->ijmnvt", G0.Data,
                              SigmaDeltaT.Data)
    G0Sigma = np.einsum("ijklvt,klmnvt->ijmnvt", G0.Data, Sigma.Data)

    ####correction term
    for tau in range(map.MaxTauBin):
        G0SigmaDeltaT[..., tau] *= np.cos(np.pi * map.IndexToTau(tau) / Beta)

    GS = Beta / map.MaxTauBin * (Beta / map.MaxTauBin * G0Sigma +
                                 G0SigmaDeltaT)
    #GS shape: NSpin,NSub,NSpin,NSub,Vol,Tau

    I = np.eye(NSpin * NSub).reshape([NSpin, NSub, NSpin, NSub])
    Denorm = I[..., np.newaxis, np.newaxis] - GS
    lu_piv, Determ = weight.LUFactor(Denorm)
    Check_Denorminator(Denorm, Determ, map)
    G.LUSolve(lu_piv, G0.Data)
    return G
Example #7
0
def Calculate_Chi(ChiTensor, map):
    NSpin, NSublat = ChiTensor.NSpin, ChiTensor.NSublat
    SxSx = np.zeros((NSpin, NSpin))
    SySy = np.zeros((NSpin, NSpin))
    SzSz = np.zeros((NSpin, NSpin))
    UU = map.Spin2Index(UP, UP)
    UD = map.Spin2Index(UP, DOWN)
    DU = map.Spin2Index(DOWN, UP)
    DD = map.Spin2Index(DOWN, DOWN)
    SxSx[UD, UD] = SxSx[DU, DU] = 1
    SxSx[UD, DU] = SxSx[DU, UD] = 1
    SySy[UD, UD] = SySy[DU, DU] = -1
    SySy[UD, DU] = SySy[DU, UD] = 1
    SzSz[UU, UU] = SzSz[DD, DD] = 1
    SzSz[UU, DD] = SzSz[DD, UU] = -1
    Chi = weight.Weight("SmoothT", map, "NoSpin", "Symmetric",
                        ChiTensor.SpaceDomain, ChiTensor.TimeDomain)
    Chi.Data = 0.0
    #SS=[SxSx/4.0, SySy/4.0, SzSz/4.0]
    #for i in range(3):
    #temp=np.einsum("ik, kminvt->mnvt", SS[i], ChiTensor.Data)
    #Chi.Data+=temp.reshape([1, NSublat, 1, NSublat, map.Vol, map.MaxTauBin])

    SS = [SzSz / 4.0]
    for i in range(1):
        temp = np.einsum("ik, kminvt->mnvt", SS[i], ChiTensor.Data)
        Chi.Data += temp.reshape(
            [1, NSublat, 1, NSublat, map.Vol, map.MaxTauBin])
    return Chi
Example #8
0
def SigmaDeltaT_FirstOrder(G, W0, map):
    '''Hatree-Fock diagram, assume Spin Conservation'''
    ########Fock Diagram
    OrderSign = -1
    AntiSymmetricFactor = -1
    SigmaDeltaT = weight.Weight("DeltaT", map, "TwoSpins", "AntiSymmetric",
                                "R")
    G.FFT("R", "T")
    W0.FFT("R")
    for spin1 in range(2):
        for spin2 in range(2):
            #############G(tau==-0)
            spinW = (map.Spin2Index(spin1,
                                    spin2), map.Spin2Index(spin2, spin1))
            spinG = (spin2, spin2)
            spinSigma = (spin1, spin1)
            SigmaDeltaT.Data[spinSigma[IN], :, spinSigma[OUT], :, :]+= OrderSign \
                    *AntiSymmetricFactor*(1.5*G.Data[spinG[IN], :, spinG[OUT], :, :, -1]\
                    -0.5*G.Data[spinG[IN], :,spinG[OUT], :, :,-2])\
                    *W0.Data[spinW[IN], :, spinW[OUT], :, :]

    ########Hatree Diagram, or bubble diagram
    FermiLoopSign = -1
    for sp1 in range(2):
        for sp2 in range(2):
            spinW = (map.Spin2Index(sp1, sp1), map.Spin2Index(sp2, sp2))
            for sub1 in range(map.NSublat):
                for sub2 in range(map.NSublat):
                    for r in range(map.Vol):
                        G1 = 1.5 * G.Data[sp2, sub2, sp2, sub2, 0,
                                          -1] - 0.5 * G.Data[sp2, sub2, sp2,
                                                             sub2, 0, -2]
                        SigmaDeltaT.Data[sp1, sub1, sp1, sub1, 0]+= OrderSign*FermiLoopSign \
                            *AntiSymmetricFactor*G1*W0.Data[spinW[IN], sub1, spinW[OUT], sub2, r]
    return SigmaDeltaT
Example #9
0
def W_FirstOrder(W0, Polar, map):
    W = weight.Weight("SmoothT", map, "FourSpins", "Symmetric", "K", "W")
    W0.FFT("K")
    Polar.FFT("K", "W")
    Beta = map.Beta
    TauRange = range(map.MaxTauBin)
    SubRange = range(W.NSublat)
    SubList = [(a, b, c, d) for a in SubRange for b in SubRange
               for c in SubRange for d in SubRange]
    SpinList=[(Wtuple,Polartuple) for Wtuple in map.GetConservedSpinTuple("FourSpins") \
                                  for Polartuple in map.GetConservedSpinTuple("FourSpins") \
                                  if map.IsConserved(4, (Wtuple[IN], Polartuple[IN]))]
    #make sure spin conservation on W0

    for spWt, spPolart in SpinList:
        spW0L = (map.Spin2Index(*spWt[IN]), map.Spin2Index(*spPolart[IN]))
        spW0R = (map.Spin2Index(*spPolart[OUT]), map.Spin2Index(*spWt[IN]))
        spW = (map.Spin2Index(*spWt[IN]), map.Spin2Index(*spWt[OUT]))
        spPolar = (map.Spin2Index(*spPolart[IN]),
                   map.Spin2Index(*spPolart[OUT]))
        for e in SubList:
            for tau in TauRange:
                W.Data[spW[IN],e[0],spW[OUT],e[3],:,tau]+=\
                        W0.Data[spW0L[IN],e[0],spW0L[OUT],e[1],:] \
                        *Polar.Data[spPolar[IN],e[1],spPolar[OUT],e[2],:,tau]\
                        *W0.Data[spW0R[IN],e[2],spW0R[OUT],e[3],:]
    return W
Example #10
0
    def Build(self):
        #self.BareG and self.BareW must be reinitialized at every time Build() is called
        self.BareG = weight.Weight("SmoothT", self.__Map, "TwoSpins",
                                   "AntiSymmetric", "R", "T")
        self.BareW = weight.Weight("DeltaT", self.__Map, "FourSpins",
                                   "Symmetric", "R", "T")
        LatName = self.Lat.Name
        # getattr(self, self.__Model)(LatName)
        try:
            getattr(self, self.__Model)(LatName)
        except:
            log.error(
                blue("Model construction fails {0}".format(
                    traceback.format_exc())))
            # Assert(False, "Model {0} has not been implemented!".format(self.__Model))

        return (self.BareG, self.BareW)
def SigmaSmoothT_FirstOrder(G, W, map):
    '''Fock diagram, assume Spin Conservation'''
    OrderSign=-1
    Sigma=weight.Weight("SmoothT", map, "TwoSpins", "AntiSymmetric", "R", "T")
    TauRange = range(map.MaxTauBin)
    G.FFT("R", "T")
    W.FFT("R", "T")
    for spin1 in range(2):
        for spin2 in range(2):
            spinW = (map.Spin2Index(spin1,spin2),map.Spin2Index(spin2,spin1))
            spinG = (spin2, spin2)
            spinSigma = (spin1, spin1)
            Sigma.Data[spinSigma[IN], :, spinSigma[OUT], :, :]  \
                    += OrderSign*G.Data[spinG[IN], :, spinG[OUT], :, :]\
                    *W.Data[spinW[IN], :, spinW[OUT], :, :]
    return Sigma
Example #12
0
def Polar_FirstOrder(G, map):
    OrderSign = -1
    FermiLoopSign = -1
    AntiSymmetricFactor = -1
    Polar = weight.Weight("SmoothT", map, "FourSpins", "Symmetric", "R", "T")
    G.FFT("R", "T")
    NSublat = map.NSublat
    NSpin = G.NSpin
    SubList = [(a, b) for a in range(NSublat) for b in range(NSublat)]
    SpList = [(a, b) for a in range(NSpin) for b in range(NSpin)]
    for spin1, spin2 in SpList:
        spinPolar = ((spin1, spin2), (spin2, spin1))
        spinG1 = (spin1, spin1)
        spinG2 = (spin2, spin2)
        for subA, subB in SubList:
            Polar.Data[map.Spin2Index(*spinPolar[IN]),subA, \
                    map.Spin2Index(*spinPolar[OUT]),subB,:,:]+=OrderSign*FermiLoopSign \
                    *AntiSymmetricFactor*G.Data[spinG1[IN], subB, spinG1[OUT], subA, :, ::-1]  \
                    *G.Data[spinG2[IN], subA, spinG2[OUT], subB, :, :]
    return Polar
Example #13
0
def GGW(GammaG, W, _map):
    W.FFT("R", "T")
    #GammaG=SimpleGG(G,_map)
    OrderSign = -1
    spinUP = _map.Spin2Index(UP, UP)
    spinDOWN = _map.Spin2Index(DOWN, DOWN)
    spinUPDOWN = _map.Spin2Index(UP, DOWN)
    spinDOWNUP = _map.Spin2Index(DOWN, UP)
    sub = 0
    GGW = np.zeros([2, _map.Vol, _map.MaxTauBin, _map.MaxTauBin]) + 0.0 * 1j
    Wshift = weight.Weight("SmoothT", _map, "FourSpins", "Symmetric", "R", "T")
    for t in range(_map.MaxTauBin):
        t1 = t - 1
        if t1 < 0:
            t1 += _map.MaxTauBin
        Wshift.Data[:, :, :, :, :, t] = 0.5 * (W.Data[:, :, :, :, :, t1] +
                                               W.Data[:, :, :, :, :, t])

    for t1 in range(_map.MaxTauBin):
        for t2 in range(_map.MaxTauBin):
            dt = t1 - t2
            if dt < 0:
                dt = dt + _map.MaxTauBin

            GGW[UP, :, t1,
                t2] = GammaG[UP, :, t1, t2] * Wshift.Data[spinUP, sub, spinUP,
                                                          sub, 0, dt]
            GGW[UP, :, t1,
                t2] += GammaG[DOWN, :, t1,
                              t2] * Wshift.Data[spinUPDOWN, sub, spinDOWNUP,
                                                sub, 0, dt]

            GGW[DOWN, :, t1,
                t2] = GammaG[UP, :, t1,
                             t2] * Wshift.Data[spinDOWNUP, sub, spinUPDOWN,
                                               sub, 0, dt]
            GGW[DOWN, :, t1,
                t2] += GammaG[DOWN, :, t1,
                              t2] * Wshift.Data[spinDOWN, sub, spinDOWN, sub,
                                                0, dt]
    return GGW * OrderSign
Example #14
0
def AddTwoW_To_GammaW(GammaW, W0, W, _map):
    # import gamma3
    sub = 0
    UPUP = _map.Spin2Index(UP, UP)
    DOWNDOWN = _map.Spin2Index(DOWN, DOWN)
    UPDOWN = _map.Spin2Index(UP, DOWN)
    DOWNUP = _map.Spin2Index(DOWN, UP)

    TauBin = _map.MaxTauBinTiny

    spinindex, spin2index = GenerateSpinIndex(_map)

    W.FFT("R", "T")
    W0.FFT("R", "T")

    # W.Data=(W.Data+W.Data[:,:,:,:,:,::-1])/2
    #when necessary, one may need to symmetrize W

    Wshift = weight.Weight("SmoothT", _map, "FourSpins", "Symmetric", "R", "T")
    for t in range(_map.MaxTauBin):
        t1 = t - 1
        if t1 < 0:
            t1 += _map.MaxTauBin
        Wshift.Data[:, :, :, :, :, t] = 0.5 * (W.Data[:, :, :, :, :, t1] +
                                               W.Data[:, :, :, :, :, t])

    Wtot = np.array(Wshift.Data[:, 0, :, 0, :, :]) * _map.Beta / TauBin
    Interval = _map.MaxTauBin / TauBin
    Wtot = Wtot[:, :, :, ::Interval]  #compress Wtot from MaxTauBin to TauBin
    Wtot[:, :, :, 0] += W0.Data[:, 0, :, 0, :]

    Wtot = FFTWshift(Wtot, _map, 1)
    #Wtot shape: spin1, spin2, dr, dt

    Wout = np.zeros((Wtot.shape[2], 1, Wtot.shape[3], 1), dtype=np.complex64)
    Wout[:, 0, :, 0] = Wtot[UPUP, UPUP, :, :]  # r1, r2=0, t1, t2=0

    Win = np.zeros((1, Wtot.shape[2], 1, Wtot.shape[3]), dtype=np.complex64)
    Win[0, :, 0, :] = Wtot[UPUP, UPUP, :, :]  # r1=0, r2, t1=0, t2

    GammaW = UnCompressGammaW(GammaW, _map)
    print GammaW.shape
    print Wout.shape

    # print "Compressing GammaW"
    # GammaW1=CompressGammaW(GammaW, _map)
    # print "UnCompressing GammaW"
    # GammaW2=UnCompressGammaW(GammaW1, _map)
    # print "UnCompressing GammaW is done"

    # for r1 in range(8):
    # # for r2 in range(8):
    # print "0", r1, np.amax(np.abs(GammaW[0,r1,:,:,:]-GammaW2[0,r1,:,:,:]))
    # for r1 in range(8):
    # print "1", r1,t, np.amax(np.abs(GammaW[1,r1,:,:,:]-GammaW2[1,r1,:,:,:]))
    #Type 0 and 1
    WWGammaW = GammaW
    for s in range(2):
        print "Calculate GammaW {0}".format(s)
        WWGammaW[s, ...] = FFTGammaW(GammaW[s, ...], _map, 1)
        print "Calculate GammaW FFT done"
        gc.collect()
        # WWGammaW=Wout*WWGammaW*Win
        if s == 0:
            WWGammaW[s, ...] *= Wout
            WWGammaW[s, ...] *= Win
        else:
            #s==1
            WWGammaW[s, ...] *= Wout * 2
            WWGammaW[s, ...] *= Win * 2

        # TempGammaW=Wout*TempGammaW*Win
        print "Calculate WWGammaW FFT back"
        WWGammaW[s, ...] = FFTGammaW(WWGammaW[s, ...], _map, -1)
        log.info(
            green("Memory Usage before collecting: {0} MB".format(
                memory_usage())))
        gc.collect()
        log.info(green("Memory Usage : {0} MB".format(memory_usage())))

    W0.FFT("R", "T")
    W.FFT("R", "T")

    # print "WWGammaW Compress"
    # WWGammaW1=CompressGammaW(WWGammaW, _map)
    # WWGammaW2=UnCompressGammaW(WWGammaW1, _map)
    # print (WWGammaW[1,0,1,2,:])
    # print (WWGammaW2[1,0,1,2,:])
    # print (WWGammaW[1,0,1,2,:]-WWGammaW2[1,0,1,2,:])
    # for r1 in range(8):
    # print "0", r1, np.amax(np.abs(WWGammaW[0,r1,:,:,:]-WWGammaW2[0,r1,:,:,:]))
    # for r1 in range(8):
    # print "1", r1, np.amax(np.abs(WWGammaW[1,r1,:,:,:]-WWGammaW2[1,r1,:,:,:]))

    return -1.0 * WWGammaW
Example #15
0
def FourierWWGammaW(GGammaG, W0, W, _map):
    # import gamma3
    GGammaG = np.array(GGammaG)
    sub = 0
    UPUP = _map.Spin2Index(UP, UP)
    DOWNDOWN = _map.Spin2Index(DOWN, DOWN)
    UPDOWN = _map.Spin2Index(UP, DOWN)
    DOWNUP = _map.Spin2Index(DOWN, UP)

    spinindex, spin2index = GenerateSpinIndex(_map)

    W.FFT("R", "T")
    W0.FFT("R", "T")
    Wshift = weight.Weight("SmoothT", _map, "FourSpins", "Symmetric", "R", "T")
    for t in range(_map.MaxTauBin):
        t1 = t - 1
        if t1 < 0:
            t1 += _map.MaxTauBin
        Wshift.Data[:, :, :, :, :, t] = 0.5 * (W.Data[:, :, :, :, :, t1] +
                                               W.Data[:, :, :, :, :, t])
    Wtot = np.array(Wshift.Data[:, 0, :, 0, :, :]) * _map.Beta / _map.MaxTauBin
    Wtot[:, :, :, 0] += W0.Data[:, 0, :, 0, :]
    Wtot = FFTWshift(Wtot, _map, 1)

    GGammaG = FFTGammaW(GGammaG, _map, 1)

    WGammaW = np.zeros([6, _map.Vol, _map.Vol, _map.MaxTauBin, _map.MaxTauBin
                        ]) + 0.0 * 1j
    print "calculating WGammaW with fourier..."

    TempGammaW = np.array(GGammaG)
    TempGammaW[0, :, :, :, :] = GGammaG[0, :, :, :, :]
    TempGammaW[1, :, :, :, :] = GGammaG[1, :, :, :, :]
    TempGammaW[2, :, :, :, :] = GGammaG[1, :, :, :, :]
    TempGammaW[3, :, :, :, :] = GGammaG[0, :, :, :, :]
    TempGammaW[4, :, :, :, :] = GGammaG[5, :, :, :, :]
    TempGammaW[5, :, :, :, :] = GGammaG[4, :, :, :, :]

    Wout = np.zeros((6, Wtot.shape[2], 1, Wtot.shape[3], 1)) + 0.0 * 1j
    Wout[0, :, 0, :, 0] = Wtot[UPUP, UPUP, :, :]
    Wout[1, :, 0, :, 0] = Wtot[DOWNDOWN, DOWNDOWN, :, :]
    Wout[2, :, 0, :, 0] = Wtot[UPUP, DOWNDOWN, :, :]
    Wout[3, :, 0, :, 0] = Wtot[DOWNDOWN, UPUP, :, :]
    Wout[4, :, 0, :, 0] = Wtot[UPDOWN, DOWNUP, :, :]
    Wout[5, :, 0, :, 0] = Wtot[DOWNUP, UPDOWN, :, :]

    WGammaW = Wout * TempGammaW

    # for kout in range(_map.Vol):
    # for wout in range(_map.MaxTauBin):

    # # UPUP UPUP
    # WGammaW[0, kout, :, wout, :]  = Wout[UPUP, UPUP, kout, wout] * GGammaG[0, kout, :, wout, :]

    # # DOWNDOWN DOWNDOWN
    # WGammaW[1, kout, :, wout, :]  = Wout[DOWNDOWN, DOWNDOWN, kout, wout] * GGammaG[1, kout, :, wout, :]

    # # out:UPUP in:DOWNDOWN
    # WGammaW[2, kout, :, wout, :]  = Wout[UPUP, DOWNDOWN, kout, wout] * GGammaG[1, kout, :, wout, :]

    # # out:DOWNDOWN in:UPUP
    # WGammaW[3, kout, :, wout, :]  = Wout[DOWNDOWN, UPUP, kout, wout] * GGammaG[0, kout, :, wout, :]

    # # out:UPDOWN in:DOWNUP
    # WGammaW[4, kout, :, wout, :]  = Wout[UPDOWN, DOWNUP, kout, wout] * GGammaG[5, kout, :, wout, :]

    # # out:DOWNUP in:UPDOWN
    # WGammaW[5, kout, :, wout, :]  = Wout[DOWNUP, UPDOWN, kout, wout] * GGammaG[4, kout, :, wout, :]

    print "calculating WWGammaW with fourier..."
    Win = np.zeros((6, 1, Wtot.shape[2], 1, Wtot.shape[3])) + 0.0 * 1j
    Win[0, 0, :, 0, :] = Wtot[UPUP, UPUP, :, :]
    Win[1, 0, :, 0, :] = Wtot[DOWNDOWN, UPUP, :, :]
    Win[2, 0, :, 0, :] = Wtot[DOWNDOWN, UPUP, :, :]
    Win[3, 0, :, 0, :] = Wtot[UPUP, UPUP, :, :]
    Win[4, 0, :, 0, :] = Wtot[UPDOWN, DOWNUP, :, :]
    Win[5, 0, :, 0, :] = Wtot[DOWNUP, UPDOWN, :, :]

    TempGammaW[0, :, :, :, :] = WGammaW[0, :, :, :, :]
    TempGammaW[1, :, :, :, :] = WGammaW[3, :, :, :, :]
    TempGammaW[2, :, :, :, :] = WGammaW[0, :, :, :, :]
    TempGammaW[3, :, :, :, :] = WGammaW[3, :, :, :, :]
    TempGammaW[4, :, :, :, :] = WGammaW[4, :, :, :, :]
    TempGammaW[5, :, :, :, :] = WGammaW[5, :, :, :, :]

    WWGammaW = Win * TempGammaW

    Win[0, 0, :, 0, :] = Wtot[UPUP, DOWNDOWN, :, :]
    Win[1, 0, :, 0, :] = Wtot[DOWNDOWN, DOWNDOWN, :, :]
    Win[2, 0, :, 0, :] = Wtot[DOWNDOWN, DOWNDOWN, :, :]
    Win[3, 0, :, 0, :] = Wtot[UPUP, DOWNDOWN, :, :]

    TempGammaW[0, ...] = WGammaW[2, ...]
    TempGammaW[1, ...] = WGammaW[1, ...]
    TempGammaW[2, ...] = WGammaW[2, ...]
    TempGammaW[3, ...] = WGammaW[1, ...]

    WWGammaW[0:4, ...] += Win[0:4, ...] * TempGammaW[0:4, ...]

    # WWGammaW = np.zeros([6, _map.Vol, _map.Vol, _map.MaxTauBin, _map.MaxTauBin]) + 0.0*1j

    # for kin in range(_map.Vol):
    # for win in range(_map.MaxTauBin):
    # ## out:UPUP in:UPUP
    # WWGammaW[0, :, kin, :, win] = Win[UPUP, UPUP, kin, win] * WGammaW[0, :, kin, :, win] + Win[UPUP, DOWNDOWN,kin, win] * WGammaW[2, :, kin, :, win]

    # ## out:DOWNDOWN in:DOWNDOWN
    # WWGammaW[1, :, kin, :, win] = Win[DOWNDOWN, UPUP,kin, win] * WGammaW[3, :, kin, :, win] + Win[DOWNDOWN, DOWNDOWN,kin, win] * WGammaW[1, :, kin, :, win]

    # ## out:UPUP in:DOWNDOWN
    # WWGammaW[2, :, kin, :, win] = Win[DOWNDOWN, UPUP,kin, win] * WGammaW[0, :, kin, :, win] + Win[DOWNDOWN, DOWNDOWN,kin, win] * WGammaW[2, :, kin, :, win]

    # ## out:DOWNDOWN in:UPUP
    # WWGammaW[3, :, kin, :, win] = Win[UPUP, UPUP,kin, win] * WGammaW[3, :, kin, :, win] + Win[UPUP, DOWNDOWN, kin, win] * WGammaW[1, :, kin, :, win]

    # ## out:UPDOWN in:DOWNUP
    # WWGammaW[4, :, kin, :, win] = Win[UPDOWN, DOWNUP, kin, win] * WGammaW[4, :, kin, :, win]

    # ## out:DOWNUP in:UPDOWN
    # WWGammaW[5, :, kin, :, win] = Win[DOWNUP, UPDOWN, kin, win] * WGammaW[5, :, kin, :, win]

    WWGammaW = FFTGammaW(WWGammaW, _map, -1)
    W0.FFT("R", "T")
    W.FFT("R", "T")

    print "calculating WWGammaW with fourier done!"
    return -1.0 * WWGammaW
Example #16
0
from operator import itemgetter

# Main caller
program_name = sys.argv[0]

if len(sys.argv) < 6:
    print("usage: " + program_name +
          " <debug_level : 1-4> <amfi.csv> <weight.csv> ... ")
    sys.exit(1)

debug_level = int(sys.argv[1])
in_weight_filename = sys.argv[2]
out_filename_phase1 = sys.argv[3]
out_filename_phase2 = sys.argv[4]
out_filename_phase3 = sys.argv[5]

if debug_level > 1:
    print('args :', len(sys.argv))

weight = weight.Weight()

weight.set_debug_level(debug_level)

weight.amfi_load_db()
weight.weight_load_data(in_weight_filename)

weight.weight_dump_ticker(out_filename_phase1)
weight.weight_dump_sorted_units(out_filename_phase2)
weight.weight_dump_sorted_name(out_filename_phase3)
Example #17
0
def Dyson(IsDysonOnly, IsNewCalculation, para, Map, Lat):
    ParaDyson=para["Dyson"]
    if not para.has_key("Version"):
        para["Version"]=0
    ########## Calulation INITIALIZATION ##########################
    Factory=model.BareFactory(Map, Lat,  para["Model"], ParaDyson["Annealing"])
    G0,W0=Factory.Build()
    IO.SaveDict("Coordinates","w", Factory.ToDict())
    Observable=measure.Observable(Map, Lat)
    W=weight.Weight("SmoothT", Map, "FourSpins", "Symmetric","R","T")
    SigmaDeltaT=weight.Weight("DeltaT", Map, "TwoSpins", "AntiSymmetric","R")
    Sigma=weight.Weight("SmoothT", Map, "TwoSpins", "AntiSymmetric","R","T")
    Polar=weight.Weight("SmoothT", Map, "FourSpins", "Symmetric","R","T")
    if IsNewCalculation:
        #not load WeightFile
        log.info("Start from bare G, W")
        G=G0.Copy()
    else:
        #load WeightFile, load G,W
        log.info("Load G, W, Sigma, Polar from {0}".format(WeightFile))
        data=IO.LoadBigDict(WeightFile)
        G=weight.Weight("SmoothT", Map, "TwoSpins", "AntiSymmetric", "R", "T").FromDict(data["G"])
        W.FromDict(data["W"])
        SigmaDeltaT.FromDict(data["SigmaDeltaT"])
        Sigma.FromDict(data["Sigma"])
        Polar.FromDict(data["Polar"])

    Gold, Wold = G, W

    #while para["Version"]<2:
    while True:
        para["Version"]+=1
        log.info(green("Start Version {0}...".format(para["Version"])))
        try:
            ratio=None   #set this will not use accumulation!
            #ratio = para["Version"]/(para["Version"]+10.0)
            G0,W0=Factory.Build()
            log.info("calculating SigmaDeltaT..")
            SigmaDeltaT.Merge(ratio, calc.SigmaDeltaT_FirstOrder(G, W0, Map))
            log.info("SigmaDeltaT is done")

            if IsDysonOnly or IsNewCalculation:
                log.info("accumulating Sigma/Polar statistics...")
                Sigma.Merge(ratio, calc.SigmaSmoothT_FirstOrder(G, W, Map))
                log.info("calculating G...")
                G = calc.G_Dyson(G0, SigmaDeltaT, Sigma, Map)
                Polar.Merge(ratio, calc.Polar_FirstOrder(G, Map))
            else:
                log.info("Collecting Sigma/Polar statistics...")
                Statis=collect.CollectStatis(Map)
                Sigma, Polar, ParaDyson["OrderAccepted"]=collect.UpdateWeight(Statis,
                        ParaDyson["ErrorThreshold"], ParaDyson["OrderAccepted"])
                log.info("calculating G...")
                G = calc.G_Dyson(G0, SigmaDeltaT, Sigma, Map)
            #######DYSON FOR W AND G###########################
            log.info("calculating W...")
            W, ChiTensor, Determ = calc.W_Dyson(W0, Polar, Map, Lat)

        except calc.DenorminatorTouchZero as err:
            #failure due to denorminator touch zero
            log.info(green("Version {0} fails due to:\n{1}".format(para["Version"],err)))
            Factory.RevertField(ParaDyson["Annealing"])
            G, W = Gold, Wold
            SigmaDeltaT.RollBack()
            Sigma.RollBack()
            Polar.RollBack()
        except collect.CollectStatisFailure as err:
            #failure due to statis files collection
            log.info(green("Version {0} fails due to:\n{1}".format(para["Version"],err)))
            G, W = Gold, Wold
            SigmaDeltaT.RollBack()
            Sigma.RollBack()
            Polar.RollBack()
        except KeyboardInterrupt, SystemExit:
            #exit
            log.info("Terminating Dyson\n {1}".format(para["Version"], traceback.format_exc()))
            sys.exit(0)
        except:
Example #18
0
 def test_weight_conversion_against_same_type(self):
     weight = w.Weight(5, 'lb')
     self.assertEqual(weight.convert('lb').value, 5)
Example #19
0
def Dyson(IsDysonOnly, IsNewCalculation, EnforceSumRule, para, Map, Lat):
    ParaDyson = para["Dyson"]
    if not para.has_key("Version"):
        para["Version"] = 0
    ########## Calulation INITIALIZATION ##########################
    Factory = model.BareFactory(Map, Lat, para["Model"],
                                ParaDyson["Annealing"])
    G0, W0 = Factory.Build()
    # G0.FFT("K","W")
    # print G0.Data[UP,0,UP,0,0,:]
    # print "Comparison 1"
    # for n in range(Map.MaxTauBin):
    # wn=1j*(2*n+1)*np.pi/Map.Beta
    # print 1.0/(wn-4.0), G0.Data[UP,0,UP,0,0,n]*Map.Beta/Map.MaxTauBin

    # print "Comparison 2"
    # G0.FFT("K","T")
    # for t in range(Map.MaxTauBin):
    # tau=Map.IndexToTau(t)
    # G0w=-np.exp(4*tau)*(1.0-1.0/(1.0+np.exp(-Map.Beta*4)))
    # print G0.Data[UP,0,UP,0,0,t], G0w

    # print "Comparison 3"
    # for n in range(Map.MaxTauBin):
    # Gw=0.0
    # wn=(2*n+1)*np.pi/Map.Beta
    # for t in range(Map.MaxTauBin):
    # tau=Map.IndexToTau(t)
    # G0w=-np.exp(4*tau)*(1.0-1.0/(1.0+np.exp(-Map.Beta*4)))
    # Gw+=G0w*np.exp(-1j*wn*tau)*Map.Beta/Map.MaxTauBin
    # # Gw+=G0.Data[UP,0,UP,0,0,t]*np.exp(-1j*wn*tau)*Map.Beta/Map.MaxTauBin
    # print 1.0/(1j*wn-4.0), Gw

    G0.FFT("K", "T")
    print G0.Data[UP, 0, UP, 0, 0, :]
    plot.PlotTimeForList("G0UPUP_r", G0, UP, 0, UP, 0, range(Map.L[0]))
    plot.PlotBand(G0, Lat)

    IO.SaveDict("Coordinates", "w", Factory.ToDict())
    Observable = measure.Observable(Map, Lat)
    W = weight.Weight("SmoothT", Map, "FourSpins", "Symmetric", "R", "T")
    SigmaDeltaT = weight.Weight("DeltaT", Map, "TwoSpins", "AntiSymmetric",
                                "R")
    Sigma = weight.Weight("SmoothT", Map, "TwoSpins", "AntiSymmetric", "R",
                          "T")
    Polar = weight.Weight("SmoothT", Map, "FourSpins", "Symmetric", "R", "T")

    if IsNewCalculation:
        #not load WeightFile
        log.info("Start from bare G, W")
        G = G0.Copy()
        if para["Gamma3"]:
            GGGammaG = gamma3.SimpleGG(G, Map)
    else:
        #load WeightFile, load G,W
        log.info("Load G, W from {0}".format(WeightFile))
        data = IO.LoadBigDict(WeightFile)
        G = weight.Weight("SmoothT", Map, "TwoSpins", "AntiSymmetric", "R",
                          "T").FromDict(data["G"])
        W.FromDict(data["W"])
        SigmaDeltaT.FromDict(data["SigmaDeltaT"])
        Sigma.FromDict(data["Sigma"])
        Polar.FromDict(data["Polar"])

        if para["Gamma3"]:
            if data.has_key("GGGammaG"):
                GGGammaG = data["GGGammaG"]["SmoothT"]
                print "Read existing GGGammaG"
            else:
                GGGammaG = gamma3.SimpleGG(G, Map)

    Gold, Wold = G, W

    #while para["Version"]==0:
    while True:
        para["Version"] += 1
        log.info(green("Start Version {0}...".format(para["Version"])))
        try:
            # ratio=None   #set this will not use accumulation!
            ratio = para["Version"] / (para["Version"] + 10.0)
            G0, W0 = Factory.Build()
            # print W0.Data[:,0,:,0,1]
            log.info("calculating SigmaDeltaT..")
            SigmaDeltaT.Merge(ratio, calc.SigmaDeltaT_FirstOrder(G, W0, Map))
            log.info("SigmaDeltaT is done")

            # print "Polar[UP,UP]=\n", Polar.Data[spinUP,0,spinUP,0,0,:]
            # print "GammaG[UP,UP]=\n", GammaG[UP,0,:,-1]

            if IsDysonOnly or IsNewCalculation:
                log.info("accumulating Sigma/Polar statistics...")
                G = calc.G_Dyson(G0, SigmaDeltaT, Sigma, Map)
                Sigma.Merge(ratio, calc.SigmaSmoothT_FirstOrder(G, W, Map))
                log.info("calculating G...")

                G = calc.G_Dyson(G0, SigmaDeltaT, Sigma, Map)
                Polar.Merge(ratio, calc.Polar_FirstOrder(G, Map))

                if para["Gamma3"]:
                    # irreducible GGGammaG = simpleGG + GGGammaG_2 + GGGammaG_3

                    # the second term GammaG: the term from dSigma/dG
                    # GGGammaG_2 = G*(W*GGGammaG)*G
                    print "Attach W to GGGammaG"
                    GammaG = gamma3.AddW_To_GGGammaG(GGGammaG, W, G.Map)
                    print "Calculate GammaG contribution to GGGammaG"
                    GGGammaG_2 = gamma3.AddTwoG_To_GammaG(GammaG, G, G.Map)

                    if Map.MaxTauBin == Map.MaxTauBinTiny:
                        # the third term: the term from dSigma/dW
                        # GGGammaG_3 = G*((W*(G*GGGammaG)*W)*G)*G
                        print "Calculate GammaW"
                        GammaW = gamma3.AddG_To_GGGammaG(GGGammaG, G, G.Map)
                        print "Calculate WWGammaW"
                        WWGammaW = gamma3.AddTwoW_To_GammaW(
                            GammaW, W0, W, G.Map)
                        print "Calculate GammaG from WWGammaW"
                        GammaG_FromWWGammaW = gamma3.AddG_To_WWGammaW(
                            WWGammaW, G, G.Map)
                        print "Calculate WWGammaW contribution to GGGammaG"
                        GGGammaG_3 = gamma3.AddTwoG_To_GammaG(
                            GammaG_FromWWGammaW, G, G.Map)
                    else:
                        WWGammaW = None
                        GGGammaG_3 = 0.0

                    SimpleGGGammaG = gamma3.SimpleGG(G, Map)

                    GGGammaG = SimpleGGGammaG
                    GGGammaG += +GGGammaG_2 - GGGammaG_3

            else:
                log.info("Collecting Sigma/Polar statistics...")
                SigmaStatis, PolarStatis, GammaG_MC, GammaW_MC = collect.CollectStatis(
                    Map, para["Gamma3"])
                Sigma, Polar_MC, ParaDyson[
                    "OrderAccepted"] = collect.UpdateWeight(
                        [SigmaStatis, PolarStatis],
                        ParaDyson["ErrorThreshold"],
                        ParaDyson["OrderAccepted"])
                #print Sigma.Data[0,0,0,0,0,0], Sigma.Data[0,0,0,0,0,-1]
                log.info("calculating G...")

                G = calc.G_Dyson(G0, SigmaDeltaT, Sigma, Map)
                SigmaDyson = calc.SigmaSmoothT_FirstOrder(G, W, Map)
                print "SigmaFromDyson=\n", SigmaDyson.Data[UP, 0, UP, 0, 0, :]

                Polar.Merge(ratio, Polar_MC)

                if para["Gamma3"]:
                    print "Calculate WWGammaW contribution to GGGammaG"
                    WWGammaW = gamma3.AddTwoW_To_GammaW(
                        GammaW_MC, W0, W, G.Map)

                    print "Calculate GGGammaW contribution to GGGammaG"
                    GGGammaG_MC = gamma3.AddTwoG_To_GammaG(GammaG_MC, G, G.Map)
                    print "Add Simple GG contribution to GGGammaG"
                    GGGammaG = gamma3.SimpleGG(G, Map) + GGGammaG_MC
                    # print "GammaG, mc=\n",  0.5*(np.sum(GGGammaG_MC[DOWN, :, :, :]-GGGammaG_MC[UP, :, :, :], axis=0)).diagonal()

            #######DYSON FOR W AND G###########################
            log.info("calculating W...")

            Wtmp, ChiTensor, Determ = calc.W_Dyson(W0, Polar, Map, Lat)

            if EnforceSumRule:
                ChiTensor = calc.Add_ChiTensor_ZerothOrder(ChiTensor, G, Map)
                Chi = calc.Calculate_Chi(ChiTensor, Map)
                Chi.FFT("R", "T")

                while abs(Chi.Data[0, 0, 0, 0, 0, 0] - 0.75) > 1.e-3:
                    SumRuleRatio = np.sqrt(0.75 / Chi.Data[0, 0, 0, 0, 0, 0])
                    PolarSumRule = Polar
                    PolarSumRule.Data = PolarSumRule.Data * SumRuleRatio
                    Wtmp, ChiTensor, Determ = calc.W_Dyson(W0, Polar, Map, Lat)
                    ChiTensor = calc.Add_ChiTensor_ZerothOrder(
                        ChiTensor, G, Map)
                    Chi = calc.Calculate_Chi(ChiTensor, Map)
                    Chi.FFT("R", "T")
                    print "Chi(r=0,t=0)", Chi.Data[0, 0, 0, 0, 0, 0]

            W = Wtmp

        except calc.DenorminatorTouchZero as err:
            #failure due to denorminator touch zero
            log.info(
                green("Version {0} fails due to:\n{1}".format(
                    para["Version"], err)))
            Factory.RevertField(ParaDyson["Annealing"])
            G, W = Gold, Wold
            SigmaDeltaT.RollBack()
            Sigma.RollBack()
            Polar.RollBack()

        except collect.CollectStatisFailure as err:
            #failure due to statis files collection
            log.info(
                green("Version {0} fails due to:\n{1}".format(
                    para["Version"], err)))
            G, W = Gold, Wold
            SigmaDeltaT.RollBack()
            Sigma.RollBack()
            Polar.RollBack()
        except KeyboardInterrupt, SystemExit:
            #exit
            log.info("Terminating Dyson\n {1}".format(para["Version"],
                                                      traceback.format_exc()))
            sys.exit(0)
        except:
Example #20
0
 def test_instantiation(self):
     weight = w.Weight(5, 'lb')
Example #21
0
 def test_weight_subtraction_against_different_type(self):
     weight = w.Weight(5, 'kg')
     other_weight = w.Weight(5, 'lb')
     self.assertEqual((weight - other_weight).value, 2.7320381499999997)
Example #22
0
def AddTwoW_To_GammaW_basis(GammaW, W0, W, _map):
    # import gamma3
    sub = 0
    UPUP = _map.Spin2Index(UP, UP)
    DOWNDOWN = _map.Spin2Index(DOWN, DOWN)
    UPDOWN = _map.Spin2Index(UP, DOWN)
    DOWNUP = _map.Spin2Index(DOWN, UP)

    spinindex, spin2index = GenerateSpinIndex(_map)

    W.FFT("R", "T")
    W0.FFT("R", "T")
    Wshift = weight.Weight("SmoothT", _map, "FourSpins", "Symmetric", "R", "T")
    for t in range(_map.MaxTauBin):
        t1 = t - 1
        if t1 < 0:
            t1 += _map.MaxTauBin
        Wshift.Data[:, :, :, :, :, t] = 0.5 * (W.Data[:, :, :, :, :, t1] +
                                               W.Data[:, :, :, :, :, t])
    Wshift = np.array(Wshift.Data[:, 0, :,
                                  0, :, :]) * _map.Beta / _map.MaxTauBin
    Wtot = np.zeros([_map.Vol, _map.MaxTauBin, _map.MaxTauBin],
                    dtype=np.complex)
    Wshift[:, :, :, 0] += W0.Data[:, 0, :, 0, :]
    for t1 in range(_map.MaxTauBin):
        for t2 in range(_map.MaxTauBin):
            dt = t1 - t2
            if dt < 0:
                dt += _map.MaxTauBin
            Wtot[:, t1, t2] = Wshift[0, 0, :, dt]
    Wtot = FFTWshift_Space(Wtot, _map, 1)
    Wtot = FitW(Wtot, _map)

    GammaW1 = RestoreGammaW(GammaW, _map)
    print "GammaW"
    print GammaW1[0, 0, 0, 0, :]
    print GammaW1[1, 0, 0, 15, :]

    WWGammaW = np.zeros([2, _map.Vol, _map.Vol, _map.BasisNum, _map.BasisNum],
                        dtype=np.complex)

    # FittedGammaW=FitGammaW(GammaW, _map)
    for s in range(2):
        TempGammaW = FFTGammaW_Space(GammaW[s, ...], _map, 1)
        TempGammaW = np.einsum("ijkl, imk->ijml", TempGammaW, Wtot)
        TempGammaW = np.einsum("ijml, jnl->ijmn", TempGammaW, Wtot)
        TempGammaW = FFTGammaW_Space(TempGammaW, _map, -1)
        if s == 1:
            TempGammaW *= 4.0
        WWGammaW[s, ...] = TempGammaW

    # WWGammaW=RestoreGammaW(WWGammaW, _map)

    log.info(
        green("Memory Usage before collecting: {0} MB".format(memory_usage())))
    gc.collect()
    log.info(green("Memory Usage : {0} MB".format(memory_usage())))
    W0.FFT("R", "T")
    W.FFT("R", "T")

    return -1.0 * WWGammaW
Example #23
0
        Ktemp = [(-3, 0), (3, 0), (0, 3), (0, -3)]
        k, ChiK = lat.FourierTransformation(
            Chi.Data[0, :, 0, :, :, omega] * map.Beta / map.MaxTauBin, Ktemp,
            "Integer")
    else:
        log.warn("Lattice PlotChi_2D not implemented yet!")

    if DoesSave:
        plt.savefig("chiK_{0}.pdf".format(lat.Name))
    else:
        plt.show()
    plt.close()
    log.info("Plotting done!")


if __name__ == "__main__":
    import weight
    import IO

    WeightPara = {"NSublat": 4, "L": [8, 8, 8], "Beta": 6.0, "MaxTauBin": 64}
    Map = weight.IndexMap(**WeightPara)
    l = lat.Lattice("Pyrochlore", Map)

    Dict = IO.LoadBigDict("Weight")["Chi"]
    Chi = weight.Weight("SmoothT", Map, "NoSpin", "Symmetric", "R",
                        "T").FromDict(Dict)

    PlotChiAlongPath(Chi, l)
    PlotChi_2D(Chi, l)
    PlotWeightvsR("\chi", Chi, l, 0, 0)
Example #24
0
 def test_simple_weight_addition(self):
     weight = w.Weight(5, 'lb')
     other_weight = w.Weight(5, 'lb') 
     self.assertEqual(weight.value + other_weight.value, 10)
Example #25
0
 def test_weight_conversion_thats_circular(self):
     weight = w.Weight(5, 'lb')
     self.assertEqual(weight.convert('kg').convert('lb').value, 5)
Example #26
0
 def __init__(self, io):
     self.proximity = proximity.Proximity()
     self.inductive = inductive.Inductive(io)
     self.weight = weight.Weight(io)
Example #27
0
 def test_weight_addition_against_different_types(self):
     weight = w.Weight(5, 'lb')
     other_weight = w.Weight(5, 'kg')
     self.assertEqual((weight + other_weight).value, 16.02311310924388)
Example #28
0
 def test_weight_conversion(self):
     weight = w.Weight(5, 'lb')
     self.assertEqual(weight.convert('kg').value, 2.2679618500000003)
Example #29
0
def CollectStatis(_map, runGamma3=False):
    Sigma = weight.Weight("SmoothT", _map, "TwoSpins", "AntiSymmetric")
    SigmaSmoothT = WeightEstimator(Sigma)
    Polar = weight.Weight("SmoothT", _map, "FourSpins", "Symmetric")
    PolarSmoothT = WeightEstimator(Polar)

    GammaGAccu = None
    GammaWAccu = None

    if runGamma3:
        GammaGAccu = None
        GammaWAccu = None
        GammaGNorm = None
        GammaWNorm = None
        GammaGNormAccu = 1.e-8
        GammaWNormAccu = 1.e-8
        # GammaWFluc=[]

    _FileList = GetFileList()
    if len(_FileList) == 0:
        raise CollectStatisFailure("No statistics files to read!")
    log.info("Collect statistics from {0}".format(_FileList))
    Total = len(_FileList)
    Success = 0.0
    for f in _FileList:
        try:
            log.info("Merging {0} ...".format(f))
            Dict = IO.LoadBigDict(f)
            SigmaSmoothT.MergeFromDict(Dict['Sigma']['Histogram'])
            PolarSmoothT.MergeFromDict(Dict['Polar']['Histogram'])

            if runGamma3:
                dataG = Dict["GammaGStatis"]
                if GammaGNorm is not None:
                    GammaGAccu += dataG['WeightAccu']
                    GammaGNormAccu += dataG['NormAccu']
                    Assert(GammaGNorm == dataG['Norm'],
                           "Norm have to be the same to merge statistics")
                else:
                    GammaGAccu = dataG['WeightAccu']
                    GammaGNormAccu = dataG['NormAccu']
                    GammaGNorm = dataG['Norm']

                dataW = Dict["GammaWStatis"]
                if GammaWNorm is not None:
                    GammaWAccu += dataW['WeightAccu']
                    GammaWNormAccu += dataW['NormAccu']
                    Assert(GammaWNorm == dataW['Norm'],
                           "Norm have to be the same to merge statistics")
                    # GammaWFluc.append(dataW['WeightAccu'][0,0,0,0,:]/dataW['NormAccu']*dataW['Norm'])
                else:
                    GammaWAccu = dataW['WeightAccu']
                    GammaWNormAccu = dataW['NormAccu']
                    GammaWNorm = dataW['Norm']
                    # GammaWFluc.append(dataW['WeightAccu'][0,0,0,0,:]/dataW['NormAccu']*dataW['Norm'])
        except:
            log.info("Fails to merge\n {0}".format(traceback.format_exc()))
        else:
            Success += 1.0
    log.info("{0}/{1} statistics files read!".format(int(Success), Total))
    if float(Success) / Total < AcceptRatio:
        raise CollectStatisFailure(
            "More than {0}% statistics files fail to read!".format(
                100.0 * AcceptRatio))
    if runGamma3:
        GammaGAccu *= 1.0 / GammaGNormAccu * GammaGNorm
        GammaWAccu *= 1.0 / GammaWNormAccu * GammaWNorm
        GammaWAccu = np.array(GammaWAccu, dtype=np.complex64)
        # GammaWFluc=np.array(GammaWFluc)
        # print np.std(GammaWFluc, axis=0)
        # print np.mean(GammaWFluc, axis=0)

    return (SigmaSmoothT, PolarSmoothT, GammaGAccu, GammaWAccu)
Example #30
0
 def test_simple_weight_subtraction(self):
     weight = w.Weight(5, 'lb')
     other_weight = w.Weight(2, 'lb')
     self.assertEqual((weight - other_weight).value, 3)