Example #1
0
def prim(G, root):
    MST = weighted_graph.Graph(G.num_nodes())
    inMST = [False] * G.num_nodes()
    graph_PQ = graph_priority_queue.MinHeap(G.num_nodes())
    root_node = NodeData(root, root, 0)
    graph_PQ.insert(root_node)
    MSTwt = 0

    while not graph_PQ.is_empty():
        element = graph_PQ.pop()

        MST.set_vertex(element.vertex, G.get_node(element.vertex).data)

        inMST[element.vertex] = True

        if element.vertex != element.MST_vertex:
            MST.add_edge(element.vertex, element.MST_vertex, element.weight)

            MSTwt = MSTwt + element.weight
        adjlist = G.get_node(element.vertex).get_edges()

        for MST_vertex, candidate_vertex, wt in adjlist:
            if not inMST[candidate_vertex]:
                newelt = NodeData(candidate_vertex, MST_vertex, wt)
                graph_PQ.insert(newelt)

    print('MST weight: ' + str(MSTwt))
    return MST
def kruskal(G):
    set_roots = initialize_set(G.num_nodes())
    MST = weighted_graph.Graph(G.num_nodes())
    for i in range(G.num_nodes()):
        MST.set_vertex(i, G.get_node(i).data)
    E = G.sort_edges()
    MSTwt = 0
    for i in range(len(E)):
        u, v, w = E[i]
        rootu = find_root(set_roots, u)
        rootv = find_root(set_roots, v)

        if rootu != rootv:
            union(set_roots, rootu, rootv)
            print('Adding edge: ' + str((u, v, w)))
            MST.add_edge(u, v, w)
            MSTwt = MSTwt + w
    print('MST weight: ' + str(MSTwt))
    return MST
import weighted_graph
import kruskal

node_numbers = {
    'N1': 0,
    'N2': 1,
    'N3': 2,
    'N4': 3,
    'N5': 4,
    'N6': 5,
    'N7': 6,
    'N8': 7
}

G = weighted_graph.Graph(len(node_numbers))
for node in node_numbers:
    G.set_vertex(node_numbers[node], node)

G.add_edge(node_numbers['N1'], node_numbers['N2'], 3)
G.add_edge(node_numbers['N1'], node_numbers['N4'], 2)
G.add_edge(node_numbers['N1'], node_numbers['N3'], 3)

G.add_edge(node_numbers['N2'], node_numbers['N4'], 9)
G.add_edge(node_numbers['N2'], node_numbers['N5'], 4)
G.add_edge(node_numbers['N2'], node_numbers['N7'], 2)

G.add_edge(node_numbers['N3'], node_numbers['N4'], 4)
G.add_edge(node_numbers['N3'], node_numbers['N5'], 1)
G.add_edge(node_numbers['N3'], node_numbers['N7'], 6)
G.add_edge(node_numbers['N3'], node_numbers['N8'], 6)
def dijkstra(G,s):
    span_tree = weighted_graph.Graph(G.num_nodes())
    in_span_tree = [False]*G.num_nodes()
    distances = [float('inf')]*G.num_nodes()
    distances[s] = 0
    predecessors = [-1]*G.num_nodes()
    E = []
    graph_PQ = graph_priority_queue.MinHeap(G.num_nodes())
    for v in range(G.num_nodes()):
        E.extend(G.get_node(v).get_edges())

    source = NodeData(s,-1,0)
    graph_PQ.insert(source)

    while not graph_PQ.is_empty():
        element = graph_PQ.pop()
        span_tree.set_vertex(element.vertex,
                         G.get_node(element.vertex).data)
        in_span_tree[element.vertex] = True
        
        if element.Svertex != -1:
            span_tree.add_edge(element.vertex,
                           element.Svertex,
                           element.weight)
        
        adjlist = G.get_node(element.vertex).get_edges()

        for Svertex, candidate_vertex, wt in adjlist:
            if in_span_tree[candidate_vertex] == False:
                if (distances[candidate_vertex] >
                   (distances[Svertex] + wt)):
                       
                    predecessors[candidate_vertex] = Svertex
                    distances[candidate_vertex] = distances[Svertex]+wt
                    
                    newelt = NodeData(candidate_vertex,
                                      Svertex,
                                      distances[candidate_vertex])
                    graph_PQ.insert(newelt)

    for v in range(G.num_nodes()):
        if v == s:
            continue
        if (predecessors[v]==-1 or
            distances[v] == float('inf')):
            print('NO PATH from node '+ str(s) +
                  ' to node '+ str(v))
            continue
        else:
            print('Shortest path (cost = '+ str(distances[v])+
                  ') from node '+str(s)+' to node '+str(v)+': ')
        stack = [v]
        done = False
        current_node = v

        while not done:
            current_node = predecessors[current_node]
            if current_node != -1:
                stack.append(current_node)
            else:
                done = True
        stack.reverse()
        print(stack)
Example #5
0
import weighted_graph

g = weighted_graph.Graph()
g.add_edge("A", "B", 2)
g.add_edge("A", "C", 2)
g.add_edge("A", "E", 0)
g.add_edge("B", "D", 0)
g.add_edge("B", "F", 0)
g.add_edge("C", "G", 2)
g.add_edge("G", "B", 1)
g.add_edge("F", "E")
g.add_edge("E", "A", 0)
g.add_node("I")
pathFW = g.FloydWarshall('A', 'I')
pathD = g.dijkstra('A', 'I')

print(pathFW)
print(pathD)