def get_weightnorm_model(data):
    from weightnorm import SGDWithWeightnorm
    from weightnorm import data_based_init

    num_classes = data[0]
    img_size = data[1].shape[1]
    x_train = data[1]

    model = Sequential()
    model.add(Dense(512, activation='relu', input_shape=(img_size,)))
    model.add(Dense(512, activation='relu'))
    model.add(Dense(num_classes, activation='softmax'))
    #model.summary()
    sgd_wn = SGDWithWeightnorm(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss='categorical_crossentropy',
                  optimizer=sgd_wn,
                  metrics=['accuracy', 'top_k_categorical_accuracy'])
    data_based_init(model, x_train[:100])
    return model
Example #2
0
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))

# let's train the model using SGD + momentum (how original). EDIT: now with weight normalization, so slightly more original ;-)
if doweightnorm:
    from weightnorm import SGDWithWeightnorm as SGD
else:
    from keras.optimizers import SGD
sgd_wn = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',optimizer=sgd_wn,metrics=['accuracy'])

# data based initialization of parameters
if doweightnorm:
    from weightnorm import data_based_init
    data_based_init(model, X_train[:100])


if not data_augmentation:
    print('Not using data augmentation.')
    model.fit(X_train, Y_train,
              batch_size=batch_size,
              nb_epoch=nb_epoch,
              validation_data=(X_test, Y_test),
              shuffle=True)
else:
    print('Using real-time data augmentation.')

    # this will do preprocessing and realtime data augmentation
    datagen = ImageDataGenerator(
        featurewise_center=False,  # set input mean to 0 over the dataset