Example #1
0
def log_time_and_memory_usage(timers, show_phase_vcfs):
    total_time = timers.total()
    logger.info("\n== SUMMARY ==")
    log_memory_usage()
    # fmt: off
    logger.info("Time spent reading BAM/CRAM:                 %6.1f s", timers.elapsed("read_bam"))
    logger.info("Time spent parsing VCF:                      %6.1f s", timers.elapsed("parse_vcf"))
    if show_phase_vcfs:
        logger.info("Time spent parsing input phasings from VCFs: %6.1f s", timers.elapsed("parse_phasing_vcfs"))
    logger.info("Time spent selecting reads:                  %6.1f s", timers.elapsed("select"))
    logger.info("Time spent phasing:                          %6.1f s", timers.elapsed("phase"))
    logger.info("Time spent writing VCF:                      %6.1f s", timers.elapsed("write_vcf"))
    logger.info("Time spent finding components:               %6.1f s", timers.elapsed("components"))
    logger.info("Time spent on rest:                          %6.1f s", total_time - timers.sum())
    logger.info("Total elapsed time:                          %6.1f s", total_time)
Example #2
0
def run_polyphase(
    phase_input_files,
    variant_file,
    ploidy,
    reference=None,
    output=sys.stdout,
    samples=None,
    chromosomes=None,
    verify_genotypes=False,
    ignore_read_groups=False,
    indels=True,
    mapping_quality=20,
    tag="PS",
    include_haploid_sets=False,
    write_command_line_header=True,
    read_list_filename=None,
    ce_bundle_edges=False,
    min_overlap=2,
    plot_clusters=False,
    plot_threading=False,
    ce_refinements=5,
    block_cut_sensitivity=4,
):
    """
    Run Polyploid Phasing.

    phase_input_files -- list of paths to BAM/CRAM/VCF files
    variant-file -- path to input VCF
    reference -- path to reference FASTA
    output -- path to output VCF or a file like object
    samples -- names of samples to phase. An empty list means: phase all samples
    chromosomes -- names of chromosomes to phase. An empty list means: phase all chromosomes
    ignore_read_groups
    mapping_quality -- discard reads below this mapping quality
    tag -- How to store phasing info in the VCF, can be 'PS' or 'HP'
    write_command_line_header -- whether to add a ##commandline header to the output VCF
    """
    timers = StageTimer()
    logger.info(
        "This is WhatsHap (polyploid) %s running under Python %s",
        __version__,
        platform.python_version(),
    )
    numeric_sample_ids = NumericSampleIds()
    with ExitStack() as stack:
        assert phase_input_files
        phased_input_reader = stack.enter_context(
            PhasedInputReader(
                phase_input_files,
                reference,
                numeric_sample_ids,
                ignore_read_groups,
                indels=indels,
                mapq_threshold=mapping_quality,
            ))
        assert not phased_input_reader.has_vcfs

        if write_command_line_header:
            command_line = "(whatshap {}) {}".format(__version__,
                                                     " ".join(sys.argv[1:]))
        else:
            command_line = None
        try:
            vcf_writer = stack.enter_context(
                PhasedVcfWriter(
                    command_line=command_line,
                    in_path=variant_file,
                    out_file=output,
                    tag=tag,
                    ploidy=ploidy,
                    include_haploid_sets=include_haploid_sets,
                ))
        except OSError as e:
            raise CommandLineError(e)

        vcf_reader = stack.enter_context(
            VcfReader(
                variant_file,
                indels=indels,
                phases=True,
                genotype_likelihoods=False,
                ploidy=ploidy,
            ))

        if ignore_read_groups and not samples and len(vcf_reader.samples) > 1:
            raise CommandLineError(
                "When using --ignore-read-groups on a VCF with "
                "multiple samples, --sample must also be used.")
        if not samples:
            samples = vcf_reader.samples

        vcf_sample_set = set(vcf_reader.samples)
        for sample in samples:
            if sample not in vcf_sample_set:
                raise CommandLineError(
                    "Sample {!r} requested on command-line not found in VCF".
                    format(sample))

        if block_cut_sensitivity < 0:
            logger.warning(
                "Block cut sensitivity was set to negative value. Lowest value (0) is assumed instead."
            )
            block_cut_sensitivity = 0
        elif block_cut_sensitivity > 5:
            logger.warning(
                "Block cut sensitivity level too large. Assuming highest valid value (5) instead."
            )
            block_cut_sensitivity = 5

        samples = frozenset(samples)

        read_list_file = None
        if read_list_filename:
            raise NotImplementedError("create_read_list_file not implemented")
            # read_list_file = create_read_list_file(read_list_filename)

        # Store phasing parameters in tuple to keep function signatures cleaner
        phasing_param = PhasingParameter(
            ploidy=ploidy,
            verify_genotypes=verify_genotypes,
            ce_bundle_edges=ce_bundle_edges,
            min_overlap=min_overlap,
            ce_refinements=ce_refinements,
            block_cut_sensitivity=block_cut_sensitivity,
            plot_clusters=plot_clusters,
            plot_threading=plot_threading,
        )

        timers.start("parse_vcf")
        try:
            for variant_table in vcf_reader:
                chromosome = variant_table.chromosome
                timers.stop("parse_vcf")
                if (not chromosomes) or (chromosome in chromosomes):
                    logger.info("======== Working on chromosome %r",
                                chromosome)
                else:
                    logger.info(
                        "Leaving chromosome %r unchanged (present in VCF but not requested by option --chromosome)",
                        chromosome,
                    )
                    with timers("write_vcf"):
                        superreads, components = dict(), dict()
                        vcf_writer.write(chromosome, superreads, components)
                    continue

                # These two variables hold the phasing results for all samples
                superreads, components, haploid_components = dict(), dict(
                ), dict()

                # Iterate over all samples to process
                for sample in samples:
                    logger.info("---- Processing individual %s", sample)

                    # Process inputs for this sample
                    missing_genotypes = set()
                    heterozygous = set()

                    genotypes = variant_table.genotypes_of(sample)
                    for index, gt in enumerate(genotypes):
                        if gt.is_none():
                            missing_genotypes.add(index)
                        elif not gt.is_homozygous():
                            heterozygous.add(index)
                        else:
                            assert gt.is_homozygous()
                    to_discard = set(range(
                        len(variant_table))).difference(heterozygous)
                    phasable_variant_table = deepcopy(variant_table)
                    # Remove calls to be discarded from variant table
                    phasable_variant_table.remove_rows_by_index(to_discard)

                    logger.info(
                        "Number of variants skipped due to missing genotypes: %d",
                        len(missing_genotypes),
                    )
                    logger.info(
                        "Number of remaining heterozygous variants: %d",
                        len(phasable_variant_table))

                    # Get the reads belonging to this sample
                    timers.start("read_bam")
                    readset, vcf_source_ids = phased_input_reader.read(
                        chromosome, phasable_variant_table.variants, sample)
                    readset.sort()
                    timers.stop("read_bam")

                    # Verify genotypes
                    if verify_genotypes:
                        timers.start("verify_genotypes")
                        logger.info("Verify genotyping of %s", sample)
                        positions = [
                            v.position for v in phasable_variant_table.variants
                        ]
                        computed_genotypes = [
                            Genotype(gt) for gt in compute_polyploid_genotypes(
                                readset, ploidy, positions)
                        ]
                        # skip all positions at which genotypes do not match
                        given_genotypes = phasable_variant_table.genotypes_of(
                            sample)
                        matching_genotypes = []
                        missing_genotypes = set()
                        print(computed_genotypes, len(computed_genotypes))
                        print(given_genotypes, len(given_genotypes))
                        print(len(positions))
                        for i, g in enumerate(given_genotypes):
                            c_g = computed_genotypes[i]
                            if (g == c_g) or (c_g is None):
                                matching_genotypes.append(g)
                            else:
                                matching_genotypes.append(Genotype([]))
                                missing_genotypes.add(i)
                        phasable_variant_table.set_genotypes_of(
                            sample, matching_genotypes)

                        # Remove variants with deleted genotype
                        phasable_variant_table.remove_rows_by_index(
                            missing_genotypes)
                        logger.info(
                            "Number of variants removed due to inconsistent genotypes: %d",
                            len(missing_genotypes),
                        )
                        logger.info(
                            "Number of remaining heterozygous variants: %d",
                            len(phasable_variant_table),
                        )

                        # Re-read the readset to remove discarded variants
                        readset, vcf_source_ids = phased_input_reader.read(
                            chromosome, phasable_variant_table.variants,
                            sample)
                        readset.sort()
                        timers.stop("verify_genotypes")

                    # Remove reads with insufficient variants
                    readset = readset.subset([
                        i for i, read in enumerate(readset)
                        if len(read) >= max(2, min_overlap)
                    ])
                    logger.info(
                        "Kept %d reads that cover at least two variants each",
                        len(readset))

                    # Adapt the variant table to the subset of reads
                    phasable_variant_table.subset_rows_by_position(
                        readset.get_positions())

                    # Run the actual phasing
                    (
                        sample_components,
                        sample_haploid_components,
                        sample_superreads,
                    ) = phase_single_individual(readset,
                                                phasable_variant_table, sample,
                                                phasing_param, output, timers)

                    # Collect results
                    components[sample] = sample_components
                    haploid_components[sample] = sample_haploid_components
                    superreads[sample] = sample_superreads

                with timers("write_vcf"):
                    logger.info("======== Writing VCF")
                    vcf_writer.write(
                        chromosome,
                        superreads,
                        components,
                        haploid_components if include_haploid_sets else None,
                    )
                    # TODO: Use genotype information to polish results
                    # assert len(changed_genotypes) == 0
                    logger.info("Done writing VCF")
                logger.debug("Chromosome %r finished", chromosome)
                timers.start("parse_vcf")
            timers.stop("parse_vcf")
        except PloidyError as e:
            raise CommandLineError(e)

    if read_list_file:
        read_list_file.close()

    logger.info("\n== SUMMARY ==")

    log_memory_usage()
    logger.info("Time spent reading BAM/CRAM:                 %6.1f s",
                timers.elapsed("read_bam"))
    logger.info("Time spent parsing VCF:                      %6.1f s",
                timers.elapsed("parse_vcf"))
    if verify_genotypes:
        logger.info(
            "Time spent verifying genotypes:              %6.1f s",
            timers.elapsed("verify_genotypes"),
        )
    logger.info("Time spent detecting blocks:                 %6.1f s",
                timers.elapsed("detecting_blocks"))
    logger.info("Time spent scoring reads:                    %6.1f s",
                timers.elapsed("read_scoring"))
    logger.info(
        "Time spent solving cluster editing:          %6.1f s",
        timers.elapsed("solve_clusterediting"),
    )
    logger.info("Time spent threading haplotypes:             %6.1f s",
                timers.elapsed("threading"))
    if plot_clusters or plot_threading:
        logger.info("Time spent creating plots:                   %6.1f s",
                    timers.elapsed("create_plots"))
    logger.info("Time spent writing VCF:                      %6.1f s",
                timers.elapsed("write_vcf"))
    logger.info("Time spent on rest:                          %6.1f s",
                timers.total() - timers.sum())
    logger.info("Total elapsed time:                          %6.1f s",
                timers.total())
Example #3
0
def run_genotype(
    phase_input_files,
    variant_file,
    reference=None,
    output=sys.stdout,
    samples=None,
    chromosomes=None,
    ignore_read_groups=False,
    indels=True,
    mapping_quality=20,
    max_coverage=15,
    nopriors=False,
    ped=None,
    recombrate=1.26,
    genmap=None,
    gt_qual_threshold=0,
    prioroutput=None,
    constant=0.0,
    overhang=10,
    affine_gap=False,
    gap_start=10,
    gap_extend=7,
    mismatch=15,
    write_command_line_header=True,
    use_ped_samples=False,
):
    """
    For now: this function only runs the genotyping algorithm. Genotype likelihoods for
    all variants are computed using the forward backward algorithm
    """
    timers = StageTimer()
    logger.info(
        "This is WhatsHap (genotyping) %s running under Python %s",
        __version__,
        platform.python_version(),
    )
    if write_command_line_header:
        command_line = "(whatshap {}) {}".format(__version__,
                                                 " ".join(sys.argv[1:]))
    else:
        command_line = None
    with ExitStack() as stack:
        # read the given input files (BAMs, VCFs, ref...)
        numeric_sample_ids = NumericSampleIds()
        phased_input_reader = stack.enter_context(
            PhasedInputReader(
                phase_input_files,
                reference,
                numeric_sample_ids,
                ignore_read_groups,
                indels=indels,
                mapq_threshold=mapping_quality,
                overhang=overhang,
                affine=affine_gap,
                gap_start=gap_start,
                gap_extend=gap_extend,
                default_mismatch=mismatch,
            ))
        show_phase_vcfs = phased_input_reader.has_vcfs

        # vcf writer for final genotype likelihoods
        vcf_writer = stack.enter_context(
            GenotypeVcfWriter(command_line=command_line,
                              in_path=variant_file,
                              out_file=output))
        # vcf writer for only the prior likelihoods (if output is desired)
        prior_vcf_writer = None
        if prioroutput is not None:
            prior_vcf_writer = stack.enter_context(
                GenotypeVcfWriter(
                    command_line=command_line,
                    in_path=variant_file,
                    out_file=stack.enter_context(open(prioroutput, "w")),
                ))

        # parse vcf with input variants
        # remove all likelihoods that may already be present
        vcf_reader = stack.enter_context(
            VcfReader(
                variant_file,
                indels=indels,
                genotype_likelihoods=False,
                ignore_genotypes=True,
            ))

        if ignore_read_groups and not samples and len(vcf_reader.samples) > 1:
            raise CommandLineError(
                "When using --ignore-read-groups on a VCF with "
                "multiple samples, --sample must also be used.")
        if not samples:
            samples = vcf_reader.samples

        # if --use-ped-samples is set, use only samples from PED file
        if ped and use_ped_samples:
            samples = set()
            for trio in PedReader(ped):
                if trio.child is None or trio.mother is None or trio.father is None:
                    continue
                samples.add(trio.mother)
                samples.add(trio.father)
                samples.add(trio.child)

        vcf_sample_set = set(vcf_reader.samples)
        for sample in samples:
            if sample not in vcf_sample_set:
                raise CommandLineError(
                    "Sample {!r} requested on command-line not found in VCF".
                    format(sample))

        if ped and genmap:
            logger.info(
                "Using region-specific recombination rates from genetic map %s.",
                genmap,
            )
            recombination_cost_computer = GeneticMapRecombinationCostComputer(
                genmap)
        else:
            if ped:
                logger.info("Using uniform recombination rate of %g cM/Mb.",
                            recombrate)
            recombination_cost_computer = UniformRecombinationCostComputer(
                recombrate)

        samples = frozenset(samples)
        families, family_trios = setup_families(samples, ped,
                                                numeric_sample_ids,
                                                max_coverage)

        # Read phase information provided as VCF files, if provided.
        with timers("parse_phasing_vcfs"):
            phased_input_reader.read_vcfs()

        # compute genotype likelihood threshold
        gt_prob = 1.0 - (10**(-gt_qual_threshold / 10.0))

        for variant_table in timers.iterate("parse_vcf", vcf_reader):

            # create a mapping of genome positions to indices
            var_to_pos = dict()
            for i in range(len(variant_table.variants)):
                var_to_pos[variant_table.variants[i].position] = i

            chromosome = variant_table.chromosome
            if (not chromosomes) or (chromosome in chromosomes):
                logger.info("======== Working on chromosome %r", chromosome)
            else:
                logger.info(
                    "Leaving chromosome %r unchanged (present in VCF but not requested by option --chromosome)",
                    chromosome,
                )
                vcf_writer.write_genotypes(chromosome,
                                           variant_table,
                                           indels,
                                           leave_unchanged=True)
                if prioroutput is not None:
                    prior_vcf_writer.write_genotypes(chromosome,
                                                     variant_table,
                                                     indels,
                                                     leave_unchanged=True)
                continue

            positions = [v.position for v in variant_table.variants]
            if not nopriors:
                # compute prior genotype likelihoods based on all reads
                for sample in samples:
                    logger.info("---- Initial genotyping of %s", sample)
                    with timers("read_bam"):
                        readset, vcf_source_ids = phased_input_reader.read(
                            chromosome,
                            variant_table.variants,
                            sample,
                            read_vcf=False,
                        )
                        readset.sort()
                        genotypes, genotype_likelihoods = compute_genotypes(
                            readset, positions)
                        # recompute genotypes based on given threshold
                        reg_genotype_likelihoods = []
                        for gl in range(len(genotype_likelihoods)):
                            norm_sum = (genotype_likelihoods[gl][0] +
                                        genotype_likelihoods[gl][1] +
                                        genotype_likelihoods[gl][2] +
                                        3 * constant)
                            regularized = PhredGenotypeLikelihoods([
                                (genotype_likelihoods[gl][0] + constant) /
                                norm_sum,
                                (genotype_likelihoods[gl][1] + constant) /
                                norm_sum,
                                (genotype_likelihoods[gl][2] + constant) /
                                norm_sum,
                            ])
                            genotypes[gl] = determine_genotype(
                                regularized, gt_prob)
                            assert isinstance(genotypes[gl], Genotype)
                            reg_genotype_likelihoods.append(regularized)
                        variant_table.set_genotype_likelihoods_of(
                            sample,
                            [
                                PhredGenotypeLikelihoods(list(gl))
                                for gl in reg_genotype_likelihoods
                            ],
                        )
                        variant_table.set_genotypes_of(sample, genotypes)
            else:

                # use uniform genotype likelihoods for all individuals
                for sample in samples:
                    variant_table.set_genotype_likelihoods_of(
                        sample,
                        [PhredGenotypeLikelihoods([1 / 3, 1 / 3, 1 / 3])] *
                        len(positions),
                    )

            # if desired, output the priors in separate vcf
            if prioroutput is not None:
                prior_vcf_writer.write_genotypes(chromosome, variant_table,
                                                 indels)

            # Iterate over all families to process, i.e. a separate DP table is created
            # for each family.
            for representative_sample, family in sorted(families.items()):
                if len(family) == 1:
                    logger.info("---- Processing individual %s",
                                representative_sample)
                else:
                    logger.info("---- Processing family with individuals: %s",
                                ",".join(family))
                max_coverage_per_sample = max(1, max_coverage // len(family))
                logger.info("Using maximum coverage per sample of %dX",
                            max_coverage_per_sample)
                trios = family_trios[representative_sample]
                assert (len(family) == 1) or (len(trios) > 0)

                # Get the reads belonging to each sample
                readsets = dict()
                for sample in family:
                    with timers("read_bam"):
                        readset, vcf_source_ids = phased_input_reader.read(
                            chromosome,
                            variant_table.variants,
                            sample,
                        )

                    with timers("select"):
                        readset = readset.subset([
                            i for i, read in enumerate(readset)
                            if len(read) >= 2
                        ])
                        logger.info(
                            "Kept %d reads that cover at least two variants each",
                            len(readset),
                        )
                        selected_reads = select_reads(
                            readset,
                            max_coverage_per_sample,
                            preferred_source_ids=vcf_source_ids,
                        )
                    readsets[sample] = selected_reads

                # Merge reads into one ReadSet (note that each Read object
                # knows the sample it originated from).
                all_reads = ReadSet()
                for sample, readset in readsets.items():
                    for read in readset:
                        assert read.is_sorted(), "Add a read.sort() here"
                        all_reads.add(read)

                all_reads.sort()

                # Determine which variants can (in principle) be phased
                accessible_positions = sorted(all_reads.get_positions())
                logger.info(
                    "Variants covered by at least one phase-informative "
                    "read in at least one individual after read selection: %d",
                    len(accessible_positions),
                )

                # Create Pedigree
                pedigree = Pedigree(numeric_sample_ids)
                for sample in family:
                    # genotypes are assumed to be unknown, so ignore information that
                    # might already be present in the input vcf
                    all_genotype_likelihoods = variant_table.genotype_likelihoods_of(
                        sample)
                    genotype_l = [
                        all_genotype_likelihoods[var_to_pos[a_p]]
                        for a_p in accessible_positions
                    ]
                    pedigree.add_individual(
                        sample,
                        [
                            Genotype([])
                            for i in range(len(accessible_positions))
                        ],
                        genotype_l,
                    )
                for trio in trios:
                    pedigree.add_relationship(
                        father_id=trio.father,
                        mother_id=trio.mother,
                        child_id=trio.child,
                    )

                recombination_costs = recombination_cost_computer.compute(
                    accessible_positions)

                # Finally, run genotyping algorithm
                with timers("genotyping"):
                    problem_name = "genotyping"
                    logger.info(
                        "Genotype %d sample%s by solving the %s problem ...",
                        len(family),
                        "s" if len(family) > 1 else "",
                        problem_name,
                    )
                    forward_backward_table = GenotypeDPTable(
                        numeric_sample_ids,
                        all_reads,
                        recombination_costs,
                        pedigree,
                        accessible_positions,
                    )
                    # store results
                    for s in family:
                        likelihood_list = variant_table.genotype_likelihoods_of(
                            s)
                        genotypes_list = variant_table.genotypes_of(s)

                        for pos in range(len(accessible_positions)):
                            likelihoods = forward_backward_table.get_genotype_likelihoods(
                                s, pos)

                            # compute genotypes from likelihoods and store information
                            geno = determine_genotype(likelihoods, gt_prob)
                            assert isinstance(geno, Genotype)
                            genotypes_list[var_to_pos[
                                accessible_positions[pos]]] = geno
                            likelihood_list[var_to_pos[
                                accessible_positions[pos]]] = likelihoods

                        variant_table.set_genotypes_of(s, genotypes_list)
                        variant_table.set_genotype_likelihoods_of(
                            s, likelihood_list)

            with timers("write_vcf"):
                logger.info("======== Writing VCF")
                vcf_writer.write_genotypes(chromosome, variant_table, indels)
                logger.info("Done writing VCF")

            logger.debug("Chromosome %r finished", chromosome)

    logger.info("\n== SUMMARY ==")
    total_time = timers.total()
    log_memory_usage()
    logger.info(
        "Time spent reading BAM:                      %6.1f s",
        timers.elapsed("read_bam"),
    )
    logger.info(
        "Time spent parsing VCF:                      %6.1f s",
        timers.elapsed("parse_vcf"),
    )
    if show_phase_vcfs:
        logger.info(
            "Time spent parsing input phasings from VCFs: %6.1f s",
            timers.elapsed("parse_phasing_vcfs"),
        )
    logger.info("Time spent selecting reads:                  %6.1f s",
                timers.elapsed("select"))
    logger.info(
        "Time spent genotyping:                          %6.1f s",
        timers.elapsed("genotyping"),
    )
    logger.info(
        "Time spent writing VCF:                      %6.1f s",
        timers.elapsed("write_vcf"),
    )
    logger.info(
        "Time spent on rest:                          %6.1f s",
        total_time - timers.sum(),
    )
    logger.info("Total elapsed time:                          %6.1f s",
                total_time)